TABLE OF CONTENTS

Project Location .. iii
Existing Site Conditions .. iii
Project Overview .. iii
Summary of Significant Impacts .. iv
Section 1.0 Introduction ... 1
Section 2.0 Project Information and Description .. 3
Section 3.0 Environmental Setting, Impacts, and Mitigation .. 12
 3.1 Aesthetics .. 16
 3.2 Energy .. 24
 3.3 Noise ... 32
 3.4 Transportation .. 42
Section 4.0 Growth-Inducing Impacts ... 50
Section 5.0 Significant and Irreversible Environmental Changes ... 52
Section 6.0 Significant and Unavoidable Impacts .. 54
Section 7.0 Alternatives .. 55
Section 8.0 References ... 60
Section 9.0 Lead Agency and Consultants .. 62
 9.1 Lead Agency .. 62
 9.2 Consultants ... 62

Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.2-1:</td>
<td>Regional Map</td>
</tr>
<tr>
<td>Figure 2.2-2:</td>
<td>Vicinity Map</td>
</tr>
<tr>
<td>Figure 2.2-3:</td>
<td>Aerial Photograph and Surrounding Land Uses</td>
</tr>
<tr>
<td>Figure 2.2-4:</td>
<td>Proposed Site Plan</td>
</tr>
<tr>
<td>Figure 2.2-5:</td>
<td>Building Elevations</td>
</tr>
</tbody>
</table>

Photos

<table>
<thead>
<tr>
<th>Photos</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photos 1&2:</td>
<td></td>
</tr>
<tr>
<td>Photos 3&4:</td>
<td></td>
</tr>
</tbody>
</table>

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.0-1:</td>
<td>Cumulative Projects List</td>
</tr>
</tbody>
</table>
Table 3.0-2: Geographic Considerations in Cumulative Analysis .. 15
Table 3.3-1: Groundborne Vibration Impact Criteria .. 33
Table 3.3-2: Typical Ranges of Construction Noise Levels at 50 Feet, Leq (dBA) 37
Table 3.4-1: Signalized Intersection Level of Service Standards .. 43

Appendices

Appendix A: Notice of Preparation
Appendix B: Construction Noise and Vibration Assessment
Appendix C: Site Access Review
SUMMARY

PROJECT LOCATION

The approximately 0.1-acre project site is located on the southwest corner of San Pedro Road and Hill Street (APN 006-363-050) in central Daly City. The site is located east of Interstate 280 (I-280) and west of Mission Street. The Colma Bay Area Rapid Transit (BART) Station is located southeast of the project site and BART rail line is located across Hill Street to the north. An unincorporated pocket of San Mateo County (including the BART Station) is located to the south and east of the site.

EXISTING SITE CONDITIONS

The project site is currently undeveloped. Land cover on the site consists of open soil surfaces. The site is bordered by an approximately three-foot tall chain-link fence. Sidewalks are located along the San Pedro Road and Hill Street frontages and an automobile dealership is located to the immediate south. Surrounding developments consist mainly of commercial and retail developments, with multiple-family residential uses intermixed. The site is located approximately 90 feet north of a San Francisco Public Utilities Commission (SFPUC) easement that is part of the Hetch Hetchy Regional Water System right-of-way.

The project site is designated Commercial - Retail and Office (C-RO) in the Daly City 2030 General Plan (General Plan) and zoned BC-BART Commercial. The Commercial - Retail and Office (C-RO) designation consists of retail and office uses both regional and citywide in scope, typically applicable to a wide range of commercial shopping areas. The Floor Area Ratio (FAR) for land uses with this designation ranges between 2.5 to 5.0 square feet of building area for each square foot of land area, except in the BART Station Area Specific Plan where specific development standards would apply. The BC-BART Commercial zoning district permits a variety of commercial uses, up to maximum heights of 35 feet.

Additionally, the project site is located within the BART Station Area Specific Plan, which encompasses an approximately 110-acre area bounded by Woodland Memorial Park on the south, I-280 on the west, the northern frontage of West Market Street on the north, and the eastern frontage of El Camino Real on the east. The Specific Plan provides a vision to transition the area into an urban mixed-use transit node that complements the character of the adjacent neighborhoods and business districts. The Specific Plan designates the site as Mixed-Use Commercial/Office. This designation describes areas where commercial uses are permitted at street level and office uses are permitted above. Typical building heights in this designation are one to two stories, with lot coverage between 35 and 60 percent.

PROJECT OVERVIEW

The project proposes to construct an approximately 1,204-square-foot retail building on the vacant 0.1-acre site. The project would provide two tenant spaces for retail uses or other permitted land uses under the existing zoning. Potential uses of the building include retail, personal services and food service uses, such as a coffee shop or delicatessen. The project would include a surface parking lot to the rear (south) of the site with five vehicle parking spaces, including one Americans with Disabilities Act (ADA) accessible space. Ingress to the parking lot would be provided via a one-way,
right-turn only driveway on Hill Street and egress would be provided via a one-way, right-turn only driveway onto San Pedro Road. The proposed building would provide two access points for pedestrians, a west entry on San Pedro Road and an east entry on Hill Street.

SUMMARY OF SIGNIFICANT IMPACTS

No significant impacts have been identified in the DEIR. Nonetheless, the project will be required to adhere to best management practices as conditions of approval to manage construction dust and noise, as described below:

The project would be required as a condition of approval to implement Bay Area Air Quality Management (BAAQMD) standard measures for dust control during construction. These standard measures, applied to construction projects throughout the City and San Francisco Bay Area, include the following:

- Water active construction areas at least twice daily or as often as needed to control dust emissions.
- Cover trucks transporting soil, sand, or other loose materials and/or ensure that all trucks hauling such materials maintain at least two feet of freeboard.
- Remove visible mud or dirt track-out onto adjacent public roads by using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
- Enclose, cover, water twice daily or apply non-toxic soil binders to exposed stockpiles (dirt, sand, etc.).
- Pave new or improved roadways, driveways, and sidewalks as soon as possible.
- Lay building pads as soon as possible after grading unless seeding or soil binders are used.
- Replant vegetation in disturbed areas as quickly as possible.
- Install sandbags or other erosion control measures to prevent silt runoff to public roadways.
- Minimize idling times either by shutting off equipment when not in use, or reducing the maximum idling time to five minutes (as required by the California Airborne Toxics Control Measure Title 13, Section 2485 of California Code of Regulations). Provide clear signage for construction workers at all access points.
- Maintain and properly tune construction equipment in accordance with manufacturer’s specifications.
- Post a publicly visible sign with the telephone number and person to contact at the lead agency regarding dust complaints.

In addition, as described in Section 3.3 Noise, the project will implement the following construction best management practices as conditions of approval to reduce noise during construction:

- Construction activities shall be limited to the hours between 8:00 a.m. and 5:00 p.m., Monday through Friday, and prohibited on weekends and holidays in accordance with the City’s General Plan, unless permission is granted with a development permit or other planning approval.
- Equip all internal combustion engine-driven equipment with intake and exhaust mufflers that are in good condition and appropriate for the equipment.
- Unnecessary idling of internal combustion engines should be strictly prohibited.
• Locate stationary noise-generating equipment, such as air compressors or portable power generators, as far as possible from nearby receptors. If they must be located near receptors, adequate muffling (with enclosures where feasible and appropriate) shall be used to reduce noise levels at nearby receptors. Any enclosure openings or venting shall face away from receptors.
• Utilize “quiet” air compressors and other stationary noise sources where technology exists.
• Control noise from construction workers’ radios to a point where they are not audible at existing structures bordering the project site.
• The contractor shall prepare a detailed construction plan identifying the schedule for major noise-generating construction activities. The construction plan shall identify a procedure for coordination with adjacent land uses so that construction activities can be scheduled to minimize noise disturbance.
• Neighbors located adjacent to the construction site shall be notified of the construction schedule in writing.
• Designate a “disturbance coordinator” who would be responsible for responding to any complaints about construction noise. The disturbance coordinator will determine the cause of the noise complaint (e.g., bad muffler, etc.) and will require that reasonable measures be implemented to correct the problem. Conspicuously post a telephone number for the disturbance coordinator at the construction site and include it in the notice sent to neighbors regarding the construction schedule.
SECTION 1.0 INTRODUCTION

1.1 PURPOSE OF THE ENVIRONMENTAL IMPACT REPORT

The City of Daly City, as the Lead Agency, has prepared this Draft Environmental Impact Report (EIR) for the 205 San Pedro Road Retail Project in compliance with the California Environmental Quality Act (CEQA) and the CEQA Guidelines. Based on a preliminary review of the project in 2017, the proposed project was determined to be eligible for a Categorical Exemption under CEQA Guidelines Section 15303(c) New Construction of Small Structures\(^1\) and Section 15332 Infill Development\(^2\); however, an EIR has been prepared to address several specific topics raised in public comments regarding the project and to facilitate public participation in the City’s planning process.

As described in CEQA Guidelines Section 15121(a), an EIR is an informational document that assesses potential environmental impacts of a proposed project, as well as identifies mitigation measures and alternatives to the proposed project that could reduce or avoid adverse environmental impacts (CEQA Guidelines 15121(a)). As the CEQA Lead Agency for this project, the City of Daly City is required to consider the information in the EIR along with any other available information in deciding whether to approve the project. The basic requirements for an EIR include discussions of the environmental setting, significant environmental impacts including growth-inducing impacts, cumulative impacts, mitigation measures, and alternatives. It is not the intent of an EIR to recommend either approval or denial of a project.

1.2 EIR PROCESS

1.2.1 Notice of Preparation and Scoping

In accordance with Section 15082 of the CEQA Guidelines, the City of Daly City prepared a Notice of Preparation (NOP) for this EIR. The NOP was circulated to local, state, and federal agencies on June 23, 2020. The standard 30-day comment period concluded on July 23, 2020. The NOP provided a general description of the proposed project and identified possible environmental impacts that could result from implementation of the project. Appendix A of this EIR includes the NOP and comments received on the NOP.

\(^1\) CEQA Guidelines Section 15303(c) exempts the construction and location of limited numbers of new, small facilities or structures including “a store, motel, office, restaurant, or similar structure not involving the use of significant amounts of hazardous substances, and not exceeding 2,500 square feet in floor area.”

\(^2\) CEQA Guidelines Section 15332 exempts projects characterized as in-fill development which meet the following conditions: a) The project is consistent with the applicable general plan designation and all applicable general plan policies as well as with applicable zoning designation and regulations; b) The proposed development occurs within city limits on a project site of no more than five acres substantially surrounded by urban uses; c) The project site has no value as habitat for endangered, rare or threatened species; d) Approval of the project would not result in any significant effects relating to traffic, noise, air quality, or water quality; e) The site can be adequately served by all required utilities and public services.
1.2.2 Draft EIR Public Review and Comment Period

Publication of this Draft EIR will mark the beginning of a 30-day public review period. During this period, the Draft EIR will be available to the public and local, state, and federal agencies for review and comment. Notice of the availability and completion of this Draft EIR will be sent directly to every agency, person, and organization that commented on the NOP. Written comments concerning the environmental review contained in this Draft EIR during the 30-day public review period should be sent to:

Brian Paland
bpaland@dalycity.org
Daly City Planning and Zoning
333 90th Street
Daly City, CA 94015

1.3 FINAL EIR/RESPONSES TO COMMENTS

Following the conclusion of the 30-day public review period, the City of Daly City will prepare a Final EIR in conformance with CEQA Guidelines Section 15132. The Final EIR will consist of:

- Revisions to the Draft EIR text, as necessary;
- List of individuals and agencies commenting on the Draft EIR;
- Responses to comments received on the Draft EIR, in accordance with CEQA Guidelines (Section 15088);
- Copies of letters received on the Draft EIR.

Section 15091(a) of the CEQA Guidelines stipulates that no public agency shall approve or carry out a project for which an EIR has been certified which identifies one or more significant environmental effects of the project unless the public agency makes one or more written findings. If the lead agency approves a project despite it resulting in significant adverse environmental impacts that cannot be mitigated to a less than significant level, the agency must state the reasons for its action in writing. This Statement of Overriding Considerations must be included in the record of project approval.

1.3.1 Notice of Determination

If the project is approved, the City of Daly City will file a Notice of Determination (NOD), which will be available for public inspection and posted within 24 hours of receipt at the County Clerk’s Office and available for public inspection for 30 days. The filing of the NOD starts a 30-day statute of limitations on court challenges to the approval under CEQA (CEQA Guidelines Section 15094(g)).
SECTION 2.0 PROJECT INFORMATION AND DESCRIPTION

2.1 EXISTING SETTING

The approximately 0.1-acre project site is located on the southwest corner of San Pedro Road and Hill Street in Daly City. Regional and vicinity maps of the project site are shown on Figure 2.2-1 and 2.2-2, respectively. An aerial photograph of the site and surrounding land uses is shown on Figure 2.2-3.

The project site is vacant and consists of open soil surfaces bordered by a chain-link fence. Sidewalks are located along the San Pedro Road and Hill Street frontages and the parking lot for an existing automobile dealership is located to the immediate south. Surrounding developments consist mainly of commercial and retail developments, with multiple-family residential uses intermixed. The BART rail line is located across Hill Street to the east of the site and stepped down from street level. Additionally, the site is located approximately 90 feet north of a SFPUC easement that is part of the Hetch Hetchy Regional Water System right-of-way and approximately 200 feet east of a major water supply pipeline (Sunset Supply Pipeline).

The project site is designated Commercial - Retail and Office (C-RO) in the Daly City 2030 General Plan (General Plan) and zoned BC-BART Commercial. The site is also located within the BART Station Area Specific Plan and is designated Mixed-Use Commercial/Office.

2.2 PROJECT DESCRIPTION

2.2.1 Proposed Development

The proposed project would develop an approximately 1,204 square-foot single-story retail building on the project site, consistent with the existing Commercial - Retail and Office (C-RO) General Plan land use designation and BC-BART Commercial zoning. The new building would provide up to two tenant spaces with retail or other permitted uses allowed under the existing zoning. Potential uses of the building include retail, personal services and food service uses, such as a coffee shop or deli.

The proposed building would front on San Pedro Road and Hill Street. The building would reach a maximum height of 24 feet and would cover approximately 28 percent of the site, with the remainder of the site occupied by a surface parking lot and interior driveway. There would be no front, rear, or side yard setbacks. The building would be designed in a contemporary style; exterior materials would include painted cementer plaster, aluminum panels and canopies, and floor-to-ceiling windows. The building would be shaped in a semi-circle, with the retail frontages curved to align with the sidewalk at San Pedro Road and Hill Street. The project site plan and building elevations are shown on Figures 2.2-4 and 2.2-5 on the following pages.
2.2.2 **Site Access and Circulation**

Vehicular access to the project site would be provided from Hill Street and egress would be provided onto San Pedro Road. Vehicles would enter the site by turning into the driveway on Hill Street and circulate through a one-way interior driveway located to the rear of the proposed building. Vehicles would exit the site by making a right turn onto San Pedro Road. Left turns out of the site onto San Pedro Road would not be permitted. Signage would be provided at both driveways to indicate the appropriate turning movements.

The project would provide five surface parking spaces on the southern end of the site, including one ADA accessible space. The trash enclosure and pick-up area would be located at the southeast corner of the site, adjacent to the Hill Street driveway. Garbage trucks would turn into the driveway and pick up the garbage and exit via the driveway on San Pedro Road. The proposed building would provide two access points for pedestrians, a west entry on San Pedro Road and an east entry on Hill Street.

2.2.3 **Construction Details**

Construction of the project is estimated to last approximately nine months, beginning in September 2021. Construction activities would include site preparation, grading, excavation, and building construction. The project would construct a new sanitary sewer lateral which would connect to an existing six-inch sewer main in San Pedro Road. Existing water lines in the adjacent streets would be utilized to provide water service to the site. Stormwater runoff from the site would be captured by two stormwater inlets located in Hill Street.

Per SFPUC policies, no construction staging would be permitted in the 45-foot wide right-of-way to the south of the site without participation in the SFPUC project review process. The project proposes to stage all construction equipment on-site; therefore, the project would not interfere with the adjacent easement.

The project would be required as a condition of approval to implement Bay Area Air Quality Management (BAAQMD) standard measures for dust control during construction. These standard measures, applied to construction projects throughout the City and San Francisco Bay Area, include the following:

- Water active construction areas at least twice daily or as often as needed to control dust emissions.
- Cover trucks transporting soil, sand, or other loose materials and/or ensure that all trucks hauling such materials maintain at least two feet of freeboard.
- Remove visible mud or dirt track-out onto adjacent public roads by using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
- Enclose, cover, water twice daily or apply non-toxic soil binders to exposed stockpiles (dirt, sand, etc.).
- Pave new or improved roadways, driveways, and sidewalks as soon as possible.
- Lay building pads as soon as possible after grading unless seeding or soil binders are used.
- Replant vegetation in disturbed areas as quickly as possible.
- Install sandbags or other erosion control measures to prevent silt runoff to public roadways.
• Minimize idling times either by shutting off equipment when not in use, or reducing the maximum idling time to five minutes (as required by the California Airborne Toxics Control Measure Title 13, Section 2485 of California Code of Regulations). Provide clear signage for construction workers at all access points.
• Maintain and properly tune construction equipment in accordance with manufacturer’s specifications.
• Post a publicly visible sign with the telephone number and person to contact at the lead agency regarding dust complaints.

In addition, as described in Section 3.3 Noise, the project will implement the following construction best management practices as conditions of approval to reduce noise during construction:

• Construction activities shall be limited to the hours between 8:00 a.m. and 5:00 p.m., Monday through Friday, and prohibited on weekends and holidays in accordance with the City’s General Plan, unless permission is granted with a development permit or other planning approval.
• Equip all internal combustion engine-driven equipment with intake and exhaust mufflers that are in good condition and appropriate for the equipment.
• Unnecessary idling of internal combustion engines should be strictly prohibited.
• Locate stationary noise-generating equipment, such as air compressors or portable power generators, as far as possible from nearby receptors. If they must be located near receptors, adequate muffling (with enclosures where feasible and appropriate) shall be used to reduce noise levels at nearby receptors. Any enclosure openings or venting shall face away from receptors.
• Utilize “quiet” air compressors and other stationary noise sources where technology exists.
• Control noise from construction workers’ radios to a point where they are not audible at existing structures bordering the project site.
• The contractor shall prepare a detailed construction plan identifying the schedule for major noise-generating construction activities. The construction plan shall identify a procedure for coordination with adjacent land uses so that construction activities can be scheduled to minimize noise disturbance.
• Neighbors located adjacent to the construction site shall be notified of the construction schedule in writing.
• Designate a “disturbance coordinator” who would be responsible for responding to any complaints about construction noise. The disturbance coordinator will determine the cause of the noise complaint (e.g., bad muffler, etc.) and will require that reasonable measures be implemented to correct the problem. Conspicuously post a telephone number for the disturbance coordinator at the construction site and include it in the notice sent to neighbors regarding the construction schedule.

2.2.4 Landscaping

The proposed project would include new perimeter landscaping. Planting strips and two Italian Cypress trees would be located adjacent to the sidewalk on San Pedro Road and Hill Street. A total of seven new trees would also be planted along the southern property line, adjacent to the proposed parking area.
AERIAL PHOTOGRAPH AND SURROUNDING LAND USES

Project Boundary

Commercial

San Pedro Road

Hill Street

BART Tracks

Commercial

Residential

San Pedro Road

Commercial

Aerial Source: Google Earth Pro, Oct. 23, 2019

Photo Date: Mar. 2018

205 San Pedro Road Retail Project

City of Daly City

Draft Environmental Impact Report

December 2020

FIGURE 2.2-3
BUILDING ELEVATIONS

Figure 2.2-5

Source: Baukunst Architecture.

205 San Pedro Road Retail Project
City of Daly City

Draft Environmental Impact Report
December 2020
2.3 PROJECT OBJECTIVES

Pursuant to CEQA Guidelines Section 15124, the EIR must include a statement of the objectives. The objectives for the proposed project are as follows:

- Develop the site in alignment with the strategies and goals of the Daly City 2030 General Plan by constructing a retail building on an undeveloped and underutilized site, consistent with General Plan policies and the site’s Commercial - Retail and Office (C-RO) land use designation.

- Provide a project that is consistent with the BART Station Area Specific Plan and the site’s associated Mixed-Use Commercial/Office designation by providing a retail use adjacent to the Colma BART Station that allows for customers and employees to access the site via public transit.

- Beautify and improve the project site while providing a retail use in a manner compatible with the surrounding residential, commercial, and public transit uses.

- Foster economic development and expand the City’s tax base by providing a retail opportunity for residents and visitors of Daly City.

2.4 USES OF THE EIR

This EIR would provide decision-makers in the City of Daly City (the CEQA Lead Agency), responsible agencies, and the general public with relevant environmental information to use in considering the project. The City of Daly City anticipates that discretionary approvals by the City, including but not limited to the following, will be required to implement the project addressed in this EIR:

- Design Review
- Grading Permit
- Building Permit
- Public Works Clearance

There are no known responsible agencies.
SECTION 3.0 ENVIRONMENTAL SETTING, IMPACTS, AND MITIGATION

This section presents the discussion of impacts related to the below environmental subjects in their respective subsections. As discussed previously, based on a preliminary review the proposed project was determined in 2017 to qualify for a Categorical Exemption under CEQA Guidelines Section 15303(c) New Construction of Small Structures and 15332 Infill Development. However, an EIR has been prepared to address several specific topics raised in public comments regarding the project and to facilitate public participation in the City’s planning process.

Effects Not Found Significant - Due to the scale of the project (at 1,204 square feet, the building is comparable to a modest single-family house or apartment unit), its infill nature near transit and surrounded by urban development, and the lack of sensitive environmental resources on and adjacent to the project site, the City has determined the project would undoubtedly, and without need for detailed explanation beyond the brief rationale provided below, result in no impacts or less than significant environmental impacts in the following resource areas:

- Agricultural and Forestry Resources. Site is not used or zoned for farmland or timberland.
- Air Quality. Project size is well below BAAQMD screening levels.
- Biological Resources. Site is vacant and not near sensitive habitats.
- Cultural Resources. Site is vacant and not in an archaeologically sensitive area.
- Geology and Soils. Site is flat and no geologic hazards are present.
- Greenhouse Gas Emissions. Project size is well below BAAQMD screening levels.
- Hazards and Hazardous Materials. Site is vacant and not on Cortese List.
- Hydrology and Water Quality. Site is small, flat, and not in a flood hazard zone.
- Land Use and Planning. Project is consistent with the City’s General Plan land use designation and zoning district, and includes no physically divisive elements.
- Mineral Resources. No mapped mineral resources on-site.
- Population and Housing. No resident population proposed.
- Public Services. Small project scale precludes need for physically altered public facilities.
- Recreation. No resident population proposed.
- Tribal Cultural Resources. No resources present, no tribal request for notification/consultation.
- Utilities and Service Systems. Small project scale precludes need for physically altered utilities.
- Wildfire. Site not in mapped wildfire hazard zone.

Pursuant to CEQA Guidelines Section 15128, these resource areas are not discussed further in this EIR.

This EIR focuses only on the following environmental subjects which were raised in public comments regarding the project:

3.1 Aesthetics 3.3 Noise
3.2 Energy 3.4 Transportation
The discussion for each environmental subject includes the following subsections:

Environmental Setting – This subsection 1) provides a brief overview of relevant plans, policies, and regulations that compose the regulatory framework for the project and 2) describes the existing, physical environmental conditions at the project site and in the surrounding area, as relevant.

Impact Discussion – This subsection includes the recommended checklist questions from Appendix G of the CEQA Guidelines to assess impacts.

- **Project Impacts** – This subsection discusses the project’s impact on the environmental subject as related to the checklist questions.

- **Cumulative Impacts** – This subsection discusses the project’s cumulative impact on the environmental subject. Cumulative impacts, as defined by CEQA, refer to two or more individual effects, which when combined, compound or increase other environmental impacts. Cumulative impacts may result from individually minor, but collectively significant effects taking place over a period of time. CEQA Guideline Section 15130 states that an EIR should discuss cumulative impacts “when the project’s incremental effect is cumulatively considerable.” The discussion does not need to be in as great detail as is necessary for project impacts, but is to be “guided by the standards of practicality and reasonableness.” The purpose of the cumulative analysis is to allow decision makers to better understand the impacts that might result from approval of past, present, and reasonably foreseeable future projects, in conjunction with the proposed project addressed in this EIR.

The CEQA Guidelines advise that a discussion of cumulative impacts should reflect both their severity and the likelihood of their occurrence (CEQA Guidelines Section 15130(b)). To accomplish these two objectives, the analysis should include either a list of past, present, and probable future projects or a summary of projections from an adopted general plan or similar document (CEQA Guidelines Section 15130(b)(1)). This EIR uses the list of projects approach.

The analysis must determine whether the project’s contribution to any cumulatively significant impact is cumulatively considerable, as defined by CEQA Guideline Section 15065(a)(3). The cumulative impacts discussion for each environmental issue accordingly addresses the following issues: 1) would the effects of all of past, present, and probable future (pending) development result in a significant cumulative impact on the resource in question; and, if that cumulative impact is likely to be significant, 2) would the contribution from the proposed project to that significant cumulative impact be cumulatively considerable?

Table 3.0-1 identifies the approved (but not yet constructed or occupied) and pending projects in the project vicinity that are evaluated in the cumulative analysis.\(^3\)

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pending and Approved, But Not Yet Constructed/Occupied</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryant Street Mixed Use</td>
<td>1590 Bryant Street</td>
<td>Zone change and construction of 27 apartment units and 3,675 square feet of commercial space on a 0.35-acre site</td>
</tr>
<tr>
<td>Woods Condominiums</td>
<td>89 Second Avenue</td>
<td>Construction of 20 condominium units on a 0.45-acre site</td>
</tr>
<tr>
<td>7330 Mission Street Mixed Use</td>
<td>7332/7330 Mission Street</td>
<td>Construction of a three-unit mixed-use apartment building on a 0.24-acre site</td>
</tr>
<tr>
<td>Edgeworth Condominiums</td>
<td>1645 Edgeworth Avenue</td>
<td>Construction of a 4-unit condominium building on a 0.17-acre site</td>
</tr>
<tr>
<td>Serra Station Mixed-Use Residential/Commercial</td>
<td>3301 Junipero Serra Boulevard; 160 and 190 B Street</td>
<td>General Plan Amendment for the construction of 75 residential units and 2,300 square feet of commercial space on a 3.94-acre site</td>
</tr>
<tr>
<td>Vista Grande Duplex</td>
<td>201 Vista Grande Avenue</td>
<td>Construction of one duplex unit on a 0.08-acre site</td>
</tr>
<tr>
<td>Station Avenue Apartments</td>
<td>130 Station Avenue</td>
<td>Construction of a 10-unit apartment building on a 0.23-acre site</td>
</tr>
<tr>
<td>Mission Street Mixed Use</td>
<td>7310 Mission Street</td>
<td>Construction of a 18-unit mixed-use apartment building on a 0.12-acre site</td>
</tr>
<tr>
<td>Vista Grande Parcel Map</td>
<td>489 Vista Grande Avenue</td>
<td>Minor subdivision of a 0.13-acre site for the construction of two detached homes</td>
</tr>
<tr>
<td>Eastmoor Residential Development</td>
<td>493 Eastmoor Avenue</td>
<td>Construction of a 72-unit apartment building on a 0.37-acre site</td>
</tr>
<tr>
<td>Serramonte Views (Phase Two – Hotel)</td>
<td>595 Serramonte Boulevard</td>
<td>General Plan Amendment and Rezoning to allow the construction of a 176-room hotel on a 1.24-acre site</td>
</tr>
<tr>
<td>North East Medical Services Building Expansion</td>
<td>211 Eastmoor Avenue</td>
<td>Planned Development Amendment to allow the construction of a net increase of 5,464 square feet of medical clinic uses on a one-acre site</td>
</tr>
<tr>
<td>7310 Mission Street Mixed-Use</td>
<td>7310 Mission Street</td>
<td>Construction of 765 square feet of commercial space on a 0.12-acre site</td>
</tr>
<tr>
<td>Serremonte Shopping Center Northwest Quadrant</td>
<td>3 Serramonte Center</td>
<td>Construction of a 70,000-square foot theater, 75,000-square foot hotel, and 28,000-square foot retail building on an 80-acre site</td>
</tr>
<tr>
<td>Serremonte Shopping Center Northeast Quadrant</td>
<td>3 Serramonte Center</td>
<td>Construction of 7,262 square feet of retail space for two fast food drive-throughs on an 80-acre site</td>
</tr>
<tr>
<td>Duggan’s Serra Mortuary Expansion</td>
<td>500 Westlake Avenue</td>
<td>Planned Development Permit to allow the expansion of the Duggan’s Serra Mortuary (15,743)</td>
</tr>
</tbody>
</table>
and Carvana Vending Machine Fulfillment Center

| Jefferson Union High School Staff Housing | 699 Serramonte Boulevard | Development of 122 multi-family units on a 3.9-acre site |

For each resource area, cumulative impacts may occur over different geographic areas. For example, the project effects on air quality would combine with the effects of projects in the entire air basin, whereas noise impacts would primarily be localized to the surrounding area. The geographic area that could be affected by the proposed project varies depending upon the type of environmental issue being considered. Section 15130(b)(3) of the CEQA Guidelines states that lead agencies should define the geographic scope of the area affected by the cumulative effect. Table 3.0-2 provides a summary of the different geographic areas used to evaluate cumulative impacts.

<table>
<thead>
<tr>
<th>Resource Area</th>
<th>Geographic Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aesthetics</td>
<td>Project site and adjacent parcels</td>
</tr>
<tr>
<td>Energy</td>
<td>Energy provider’s territory</td>
</tr>
<tr>
<td>Noise and Vibration</td>
<td>Project site and adjacent parcels</td>
</tr>
<tr>
<td>Transportation/Traffic</td>
<td>Surrounding roadways</td>
</tr>
</tbody>
</table>
3.1 AESTHETICS

3.1.1 Environmental Setting

3.1.1.1 Regulatory Framework

State

Streets and Highway Code Sections 260 through 263

The California Scenic Highway Program (Streets and Highway Code, Sections 260 through 263) is managed by the California Department of Transportation (Caltrans). The program is intended to protect and enhance the natural scenic beauty of California highways and adjacent corridors through special conservation treatment.

In San Mateo County, there are three state-designated scenic highways, including California State Route 1 (SR-1) segment between south of Half Moon Bay to the Santa Cruz County line (approximately 16 miles south of the project site), Interstate 280 (I-280) segment near the City of San Bruno to Santa Clara County line (approximately four miles south of the project site), and California State Route 35 (SR-35) segment between State Route 92 (SR-92) intersection to Santa Cruz County Line (approximately 14.3 miles south of the project site). The entirety of I-280 is eligible for designation as a scenic highway. There are no state-designated scenic highways in Daly City.4

Local

Daly City 2030 General Plan

The General Plan includes a Visual Quality section under the Resources Management Element. General Plan policies and tasks relevant to the project with regards to aesthetics are listed below.

<table>
<thead>
<tr>
<th>Policy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy LU-16</td>
<td>Regulate the size, quantity, and location of signs to maintain and enhance the visual appearance of Daly City.</td>
</tr>
<tr>
<td>Policy LU-17</td>
<td>Ensure that private development is responsible for providing any on- or off-site improvements related to and/or mitigating the impacts it causes.</td>
</tr>
<tr>
<td>Policy RME-20</td>
<td>Recognize the physical differences between different parts of the City and regulate land uses within these areas accordingly.</td>
</tr>
<tr>
<td>Task CE-20.7</td>
<td>As a part of all new development, require, where appropriate, the provision of pedestrian-oriented signs, pedestrian-scaled lighting, benches, and other street furniture so as to make non-motorized forms of travel comfortable and attractive alternatives to the automobile. Where necessary in new development, the City may require additional sidewalk and/or right-of-way width to accommodate these amenities.</td>
</tr>
<tr>
<td>Task RME-20.4</td>
<td>Incorporate design features in new development that reflect the character of the neighborhood, to ensure that new construction is compatible with existing development.</td>
</tr>
</tbody>
</table>

BART Station Area Specific Plan

The BART Station Area Specific Plan was adopted in 1993 and encompasses an approximately 110-acre area bounded by Woodland Memorial Park on the south, I-280 on the west, the northern frontage of West Market Street on the north, and the eastern frontage of El Camino Real/Mission Street (SR-82) on the east. The Specific Plan provides a vision to transition the area into an urban mixed-use transit node that complements the character of the adjacent neighborhoods and business districts. The Specific Plan includes development standards and design guidelines which are intended to provide for high quality design and provide design guidance for specific development projects as well as the public realm. In the Specific Plan, the project site is designated as Mixed-Use Commercial/Office. This designation describes areas where commercial uses are permitted at street level and office uses are permitted above. Typical building heights in this designation are one to two stories, with lot coverage between 35 and 60 percent.

3.1.1.2 Existing Conditions

Project Site

The approximately 0.1-acre project site is undeveloped and consists of open soil surfaces. The site is surrounded by an approximately three-foot tall chain-link fence and bordered by sidewalks along the San Pedro Road and Hill Street frontages. Views of the project site and surrounding areas are shown on Photos 1 through 4 on the following pages.

Surrounding Land Uses

Surrounding land uses include commercial uses to the north and west, residential uses and the Holy Angels School to the east, and a car dealership to the south. The commercial building across San Pedro Road to the north is approximately 20- to 25-feet tall and has a uniform rectangular shape. The building is occupied by a variety of tenants, with the individual businesses differentiated by varied decorations and/or signage on the store fronts. The San Pedro Road frontage which faces the project site is generally occupied by auto repair/auto body shops with no windows and perforated roll-down doors. East of the site, across Hill Street and stepped down from street level, are the BART railroad tracks. Beyond the railroad tracks are several residential buildings. Along San Pedro Road are two- and three-story residential buildings, and further south is a five-story multiple-family residential building. The five-story building is set back from San Pedro Road and separated from the roadway by a surface parking lot and landscaped areas. The nearby residential buildings are generally designed in a contemporary architectural style. Immediately south of the site is a car dealership. The car dealership includes a one-story showroom and an attached four-story maintenance building and parking garage. The showroom has a large glass façade of varying depths. A surface parking lot with for-sale cars, a manicured lawn area, and parking lot planters separate the project site from the dealership building. To the west of the site is a gas station with a surface parking lot. Overall, the development in the area is comprised of a mix of architectural styles and ages, with no one particular style being dominant.
Scenic Views

The General Plan identifies important scenic resources in Daly City as views of the ocean and coastline as well as San Bruno Mountain. Coastal views are provided from streets that run parallel to the coast, such as Northridge Drive, Avalon Drive, and Skyline Boulevard. Views of San Bruno Mountain are provided from select locations in Daly City, including along portions of Southgate Avenue, School Street, and Serramonte Boulevard. The project site does not provide any scenic views of the ocean or coastline but does provide limited views of San Bruno Mountain.

Scenic Corridors

As mentioned, segments of Skyline Boulevard (SR-35), Cabrillo Highway (SR-1), and Junipero Serra Freeway (I-280) are state-designated highways under the Scenic Highway Program, and the entirety of I-280 is eligible for designation as a scenic highway. Additionally, John Daly Boulevard and Guadalupe Canyon Parkway are roads identified in the San Mateo County General Plan which provide access to visual resources, such as San Bruno Mountain and the San Francisco Bay. The project site is not located along, or visible from, any of these scenic corridors.

Light and Glare

The existing site is undeveloped and does not contribute light or glare to the surrounding areas. Streetlights and other lighting are found throughout the area in the vicinity of the project. Sources of light and glare in the surrounding area are those typical in developed urban areas, including headlights, streetlights, parking lot lights, security lights, and reflective surfaces such as windows.
Photo 1: View of the project site and surrounding land uses from Hill Street, looking west/southwest.

Photo 2: View of the project site and land uses across San Pedro Road, looking west.
Photo 3: View of the project site at its northern boundary on Hill Street, looking east.

Photo 4: View of surrounding land uses from the corner of San Pedro Road and Hill Street, looking north.
3.1.2 **Impact Discussion**

For the purpose of determining the significance of the project’s impact on aesthetics, except as provided in Public Resources Code Section 21099, would the project:

1) Have a substantial adverse effect on a scenic vista?
2) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?
3) Substantially degrade the existing visual character or quality of public views of the site and its surroundings? If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality?
4) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

3.1.2.1 Project Impacts

Impact AES-1: The project would not have a substantial adverse effect on a scenic vista. *(No Impact)*

The project proposes to develop a vacant site with a commercial building in an urbanized area of the City. The proposed building would be 24 feet tall and provide 1,204 square feet of floor space. The project would include a surface parking lot with five vehicle spaces and small landscaped areas along the site frontage and within the parking lot.

The project site does not provide any scenic vistas. While the project may block some views of San Bruno Mountain from the San Pedro Road right-of-way, this would not be considered an adverse effect because it would only occur intermittently and would not affect views from any recognized lookout points. Views of San Bruno Mountain are similarly obstructed by taller development along the San Pedro Road corridor. Further, the project is consistent with the General Plan and Zoning Ordinance height limits and build out of the General Plan was found to have a less than significant impact on scenic vistas, including views of San Bruno Mountain. There are no other scenic vistas nearby that could be obstructed by the proposed development and the project site is not visible from any scenic corridors identified in the General Plan. Therefore, the project would not adversely affect any scenic vistas. *(No Impact)*

Impact AES-2: The project would not substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway. *(No Impact)*

The project site is not located along a state-designated scenic highway. Although the project site is located approximately 0.1-mile east of I-280, which is an eligible scenic highway, the site is not visible from I-280 due to the lower elevation of the highway and intervening structures. There are no scenic vistas.
trees, rock outcroppings, or historic buildings on the project site. Therefore, development of the site with the proposed retail building would not substantially damage scenic resources. (No Impact)

Impact AES-3: The project would not substantially degrade the existing visual character or quality of public views of the site and its surroundings. The project would not conflict with applicable zoning and other regulations governing scenic quality. (Less than Significant Impact)

The proposed project would develop a vacant site with a 24-foot tall commercial building, surface parking lot, and landscaping. The proposed project would be visible from the surrounding roadways (San Pedro Road and Hill Street) and adjacent parcels. The proposed project would alter the visual character of the site and its surroundings; however, due to its similar size and scale, the proposed commercial building would not be visually incompatible with the adjacent car dealership to the south, commercial buildings to the north and west, or residential buildings to the east. Additionally, neither the site nor the immediate surrounding parcels are recognized for their scenic qualities in the City’s General Plan, the BART Specific Plan or other planning documents. As discussed under Impact AES-2, the proposed development would not result in the loss of scenic resources which contribute to the visual character of the area. The General Plan EIR concluded that infill development and redevelopment of vacant or undeveloped sites will have a beneficial impact on the visual and aesthetic characteristics of the City, as they will work to create a more unified, pedestrian-friendly, and aesthetically pleasing streetscape. The proposed project is an infill development which would improve the appearance of a currently vacant site.

While the introduction of the proposed commercial structure would impede some existing views of the adjacent car dealership from San Pedro Road, the resulting reduction in views of an adjacent commercial land use is not an environmental impact under CEQA unless the adjacent site and structure are recognized for their outstanding or unique aesthetic qualities and character. This is not the case for the adjacent car dealership, which is of modern, common design. To the extent the proposed building would impede the public’s view of the car dealership inventory, signage, and other site features intended to attract business, that is a potential economic issue and not an environmental impact of the proposed project.

The primary visual components of the project would be the proposed building’s height, floor-to-ceiling windows, and colored aluminum paneling at its frontage on San Pedro Road and Hill Street. The proposed height of the building (24 feet) does not exceed the maximum allowable height under the current zoning (35 feet). As set forth in Chapter 17.45 of the Municipal Code, the project would be subject to the Design Review process to ensure that site and building design are compatible with surrounding development. During this process, the project would also be reviewed for consistency with the development standards set forth in the BART Station Area Specific Plan for the Mixed-Use Commercial/Office zoning district. In the Specific Plan, development of a “landmark tower building” at the intersection of San Pedro Road and Hill Street is strongly encouraged. Additionally, parking lots on the frontage of San Pedro Road and Hill Street are discouraged and parking lots should be

landscaped with a minimum of one tree per every six parking spaces. The proposed project would meet these development standards by locating parking areas to the rear of the site and planting nine trees on-site. Overall, the project would be consistent with the type, size, and scale of development envisioned for the site in the Specific Plan.

The City’s Design Review process would ensure that the project does not conflict with the development standards set forth in the BART Station Area Specific Plan. The proposed retail building would be similar in size and scale to existing development in the area. For these reasons, the project would not conflict with any regulations governing scenic quality or substantially degrade the existing visual character or quality of public views of the site and its surroundings. (Less than Significant Impact)

Impact AES-4:
The project would not create a new source of substantial light or glare which would adversely affect day or nighttime views in the area. (Less than Significant Impact)

As it exists, ambient nighttime lighting at the site and in its vicinity is created by adjacent traffic and streetlights along nearby roadways, security lighting in the adjacent parking lot and building exteriors, and the adjacent commercial and residential buildings. The proposed project would add new sources of nighttime light, such as security lighting and interior lighting, that would incrementally increase the amount of ambient light in the area. The proposed project would be subject to review by the City’s design review committee, which would evaluate the exterior lighting and signage to ensure it is compatible with the surrounding environment. Compliance with the Design Review process outlined in the Municipal Code would reduce light and glare impacts to be less than significant. (Less than Significant Impact)

Cumulative Impacts

Impact AES-C:
The project would not result in a cumulatively considerable contribution to a significant cumulative aesthetics impact. (Less than Significant Cumulative Impact)

The cumulative projects analyzed in this EIR in Daly City may demolish existing buildings, construct taller buildings, remove trees, and possibly affect scenic views and resources. As discussed previously, the Daly City General Plan, Zoning Ordinance, and BART Station Area Specific Plan includes standards and guidelines to reduce impacts to scenic views and resources.

All cumulative projects occurring within Daly City would be subject to design guidelines (depending on the proposed use and location), lighting standards, and signage regulations. By requiring projects to adhere to the aforementioned measures and requirements, aesthetic impacts would be minimized or reduced. Development projects in the City would undergo individual review to ensure that site selection, building materials, heights, and lighting is implemented in a manner that does not result in significant visual impacts. For these reasons, the cumulative projects, including the proposed retail project, would not result in a significant cumulative aesthetic or visual impact. This conclusion is consistent with the findings of the General Plan EIR. (Less than Significant Cumulative Impact)
3.2 ENERGY

A discussion of a project’s energy consumption is required in an EIR per the CEQA Guidelines. Therefore, the following discussion is included in this DEIR, despite the small size of the project and minimal anticipated energy consumption.

3.2.1 Environmental Setting

3.2.1.1 Regulatory Framework

Federal and State

Energy Star and Fuel Efficiency

At the federal level, energy standards set by the EPA apply to numerous consumer products and appliances (e.g., the EnergyStar™ program). The EPA also sets fuel efficiency standards for automobiles and other modes of transportation.

Renewables Portfolio Standard Program

In 2002, California established its Renewables Portfolio Standard Program, with the goal of increasing the percentage of renewable energy in the state’s electricity mix to 20 percent of retail sales by 2010. In 2008, Executive Order S-14-08 was signed into law, requiring retail sellers of electricity serve 33 percent of their load with renewable energy by 2020. In October 2015, Governor Brown signed SB 350 to codify California’s climate and clean energy goals. A key provision of SB 350 requires retail sellers and publicly owned utilities to procure 50 percent of their electricity from renewable sources by 2030. SB 100, passed in 2018, requires 100 percent of electricity in California to be provided by 100 percent renewable and carbon-free sources by 2045.

California Building Standards Code

The Energy Efficiency Standards for Residential and Nonresidential Buildings, as specified in Title 24, Part 6 of the California Code of Regulations (Title 24), was established in 1978 in response to a legislative mandate to reduce California’s energy consumption. Title 24 is updated approximately every three years, and the 2019 Title 24 updates went into effect on January 1, 2020. Compliance with Title 24 is mandatory at the time new building permits are issued by city and county governments.

California Green Building Standards Code

The California Green Building Standards Code (CALGreen) establishes mandatory green building standards for buildings in California. CALGreen was developed to reduce GHG emissions from buildings, promote environmentally responsible and healthier places to live and work, reduce energy and water consumption, and respond to state environmental directives. The most recent update to

CALGreen went into effect on January 1, 2020, and covers five categories: planning and design, energy efficiency, water efficiency and conservation, material and resource efficiency, and indoor environmental quality.

Advanced Clean Cars Program

CARB adopted the Advanced Clean Cars program in 2012 in coordination with the EPA and National Highway Traffic Safety Administration. The program combines the control of smog-causing pollutants and GHG emissions into a single coordinated set of requirements for vehicle model years 2015 through 2025. The program promotes development of environmentally superior passenger cars and other vehicles, as well as saving the consumer money through fuel savings.\(^{11}\)

Local

Daly City 2030 General Plan

The City of Daly City’s General Plan includes specific policies and tasks which address energy conservation opportunities within the City. All new residential and nonresidential construction in the City must abide by the State of California’s residential building standards for energy efficiency (Title 24 of the California Administrative Code). Title 24 Standards were established in 1978 to ensure that all new construction meets a minimum level of energy efficiency.

<table>
<thead>
<tr>
<th>Policy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy HE-24</td>
<td>Mandate the inclusion of green building techniques into most new construction.</td>
</tr>
<tr>
<td>Task HE-28.2</td>
<td>Encourage, incentivize, or require all new major construction projects to pre-plumb for solar hot water and pre-wire for solar electric systems.</td>
</tr>
</tbody>
</table>

Daly City Green Vision

Daly City’s Green Vision, A Climate Action Plan (CAP) for 2011-2020 and Beyond, was adopted in December 2010. Daly City’s Green Vision guides the City towards a sustainable future that reduces GHG emissions from current levels, while promoting economic prosperity for present and future generations. The Green Vision identifies ten goals and seeks to achieve these goals through cost-effective strategies by the year 2020. The GHG reduction goals include adopting a general plan with measurable policies for sustainable development, reducing energy use in buildings, reducing transportation emissions, reducing solid waste disposal, and GHG emissions reductions from municipal operations. Daly City recently completed an update to the General Plan in March 2013 which incorporated these goals.

City of Daly City Municipal Code

Recycling and Diversion of Construction and Demolition, (Municipal Code 15.64): This ordinance requires that construction and demolition projects recycle or reuse 60 percent of the waste generated from the project.

3.2.1.2 Existing Conditions

Out of the 50 states, California is ranked second in total energy consumption and 48th in energy consumption per capita. Total energy usage in California was approximately 7,881 trillion British thermal units (Btu) in the year 2017, the most recent year for which this data was available. The breakdown by sector was approximately 18 percent (1,416 trillion Btu) for residential uses, 19 percent (1,473 trillion Btu) for commercial uses, 23 percent (1,818 trillion Btu) for industrial uses, and 40 percent (3,175 trillion Btu) for transportation. This energy is primarily supplied in the form of natural gas, petroleum, nuclear electric power, and hydroelectric power.

Electricity

Electricity in San Mateo County in 2018 was consumed primarily by the commercial sector (64 percent), with the residential sector consuming 36 percent. In 2018, a total of approximately 4,226 GWh of electricity was consumed in San Mateo County.

Peninsula Clean Energy (PCE) is a public and locally controlled electricity provider for the County of San Mateo. Electricity provided by PCE is delivered through PG&E transmission lines. Commercial and residential customers in San Mateo County are included in the PCE service area and can choose to have 50 to 100 percent of their electricity supplied from carbon-free and renewable sources. Customers are automatically enrolled in the ECOplus plan, which generates its electricity from 85 percent carbon-free sources, with at least 50 percent from renewable sources. Customers have the option to enroll in the ECO100 plan, which generates its electricity from 100 percent carbon-free, renewable sources.

At the time of analysis in the General Plan EIR (2012), Daly City had annual electricity consumption rates of 4,831 kWh per customer for residential uses and 90,896 kWh per customer for commercial uses. These consumption rates have likely remained relatively stable or only increased incrementally with population growth to the present day, given technological improvements in energy efficiency and statewide mandates such as CALGreen.

Natural Gas

PG&E provides natural gas services within Daly City. In 2018, approximately one percent of California’s natural gas supply came from in-state production, while the remaining supply was imported from other western states and Canada. In 2018, residential and commercial customers in

California used 34 percent of the state’s natural gas, power plants used 35 percent, and the industrial sector used 21 percent. Transportation accounted for one percent of natural gas use in California.

At the time of analysis in the General Plan EIR (2012), Daly City had annual natural gas consumption rates of 497 therms per customer for residential uses and 5,833 therms per customer for commercial uses.\(^{18}\)

Fuel for Motor Vehicles

In 2018, approximately 15.5 billion gallons of gasoline were sold in California.\(^{19}\) The average fuel economy for light-duty vehicles (autos, pickups, vans, and sport utility vehicles) in the United States has steadily increased from about 13.1 miles per gallon (mpg) in the mid-1970s to 25.5 mpg in 2019.\(^{20}\) Federal fuel economy standards have changed substantially since the Energy Independence and Security Act was passed in 2007. That standard, which originally mandated a national fuel economy standard of 35 miles per gallon by the year 2020, was subsequently revised to apply to cars and light trucks model years 2011 through 2020.\(^{21,22}\)

Project Site

The project site is vacant and does not create any demand for energy resources.

3.2.2 Impact Discussion

For the purpose of determining the significance of the project’s impact on energy, would the project:

1. Result in a potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?
2. Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?
3. Result in a substantial increase in demand upon energy resources in relation to projected supplies?

3.2.2.1 Project Impacts

Impact EN-1: The project would not result in a potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation. (Less than Significant Impact)

Construction

Construction of the proposed project is estimated to take nine months. Energy would be required during the construction period related to the transportation of building materials, preparation of the project site (i.e., grading), fuel use for worker travel and construction equipment, and actual construction of the proposed building. Construction processes are already designed to be efficient to reduce excess monetary costs and opportunities for increased energy conservation during construction are limited. The project would be required to comply with CALGreen construction waste management requirements, which require a minimum of 65 percent of nonhazardous construction and demolition waste to be recycled and/or salvaged for reuse (CALGreen Section 4.408.1) and a construction waste management plan to be submitted to the City (CALGreen Section 4.408.2). Recycling construction and demolition debris would reduce energy use associated with landfilling the waste and producing new materials for future construction projects. Construction would be limited to the hours allowed by the Municipal Code for construction activities. The project does not require demolition nor major excavation, activities which would substantially increase the energy expended to construct the project. The project is an infill development and construction equipment, materials, and workers would not travel long distances to reach the site. Existing utilities are available to serve the project and excessive energy would not be spent establishing new connections to existing lines. For these reasons, the proposed project would not result in wasteful or inefficient energy use during construction. (Less than Significant Impact)

Operation

The proposed retail building would not be an energy-intensive land use. The project scale, at 1,204 square feet, is extremely small, substantially smaller than most existing and planned development in the City. Operational energy expenditures of the project would result primarily from heating and cooling of the building, solid waste and wastewater disposal, water use, and gasoline consumed by vehicles traveling to and from the site. The proposed project is consistent with the General Plan, and in its General Plan EIR the City found that implementation of the General Plan would not result in wasteful, inefficient, and unnecessary consumption of energy.

The proposed project would be constructed in accordance with the latest CALGreen and Title 24 standards. CALGreen establishes voluntary and mandatory measures for non-residential developments which reduce water use and waste generation, and conserve energy through building design and site planning. Adherence to CALGreen would ensure that the project includes measures to reduce energy use and increase the operational efficiency of the proposed retail building. Title 24 sets forth the latest energy and water efficiency requirements for new commercial developments. The proposed project would incorporate measures into its final design that would meet the requirements of Title 24, subject to verification by the City at the time of permit issuance, thereby ensuring the proposed building incorporates the most current best practices to increase energy savings.
Electricity would be provided to the proposed building by PCE, which generates its electricity from 85 percent carbon-free sources, with at least 50 percent from renewable sources. The project would have the option to enroll in the ECO100 plan, which provides electricity from 100 percent carbon-free, renewable sources. By sourcing energy from largely carbon-free and/or renewable sources, the project would reduce unnecessary energy use during its operation. Furthermore, the project is an infill development and would make use of underutilized land in a developed area of the City. The project would be located within walking distance of the Colma BART Station and various amenities and services, which could reduce transportation-related energy expenditures generated by employees/patrons of the building. For these reasons, along with the project’s extremely small size, the proposed project would not result in wasteful or inefficient energy use during operation. (Less than Significant Impact)

Impact EN-2: The project would not conflict with or obstruct a state or local plan for renewable energy or energy efficiency. (Less than Significant Impact)

Statewide energy efficiency and renewable energy goals are set forth in the California Renewables Portfolio Standard Program, which is one of California’s key programs for advancing renewable energy. The CEC verifies the eligibility of renewable energy procured by all entities serving retail sales of electricity in California, as these entities are obligated to participate and report energy portfolios to the CEC to comply with the Renewables Portfolio Standard Program.23 Electricity would be provided to the project by PCE from sources of renewable and carbon-free power including wind, solar, geothermal, and hydroelectric. As described above, PCE is subject to verification by the CEC as an electricity-providing entity. By sourcing electricity from PCE, the project would be compliant with statewide energy goals as set forth in the California Renewables Portfolio Standard Program.

As described in Section 3.2.1.1 Regulatory Framework, the Daly City Green Vision identifies ten goals focused on reducing GHG emissions, which include reducing energy use in buildings, reducing transportation emissions, reducing solid waste disposal, and GHG emissions reductions from municipal operations. While primarily functioning as a Climate Action Plan, the Green Vision is applicable to energy resources because energy production and use is a major source of GHG emissions.

The proposed project is an infill development near local and regional transit services. The project would be built to CALGreen and Title 24 requirements to ensure the project meets statewide standards for energy conservation. Additionally, as described above, the project would be automatically enrolled in PCE’s ECOplus plan, which generates its electricity from 85 percent carbon-free sources, with at least 50 percent from renewable sources. The project would have the option to enroll in the ECO100 plan, which provides electricity from 100 percent carbon-free, renewable sources. Furthermore, a minimum of 65 percent of construction debris would be recycled and readily accessible recycling areas would be provided in the proposed building. The project would plant new trees and landscaping on-site and incorporate water-efficient fixtures into the building.

design. The project, at 1,204 square feet and incorporating the many requirements noted previously, would not result in a substantial increase in energy and is consistent with planned growth of the City as envisioned in the 2030 General Plan. For these reasons, the project would not conflict with or obstruct implementation of the Daly City Green Vision, nor would the project preclude the City from meeting statewide energy efficiency and renewable energy goals as set forth in the California Renewables Portfolio Standard Program. (Less than Significant Impact)

Impact EN-3: The project would not result in a substantial increase in demand upon energy resources in relation to projected supplies. (Less than Significant Impact)

The CEC provides new forecasts for electricity and natural gas demand every two years as part of the Integrated Energy Policy Report process. According to the 2019 Integrated Energy Policy Report, annual electricity consumption in California is forecasted to increase to approximately 340,000 GWh from approximately 280,000 GWh in 2019.24 Annual natural gas consumption is expected to decrease from approximately 13,000 million therms in 2019 to approximately 12,800 million therms in 2030.25 Similarly, transportation demand is forecasted to decrease from approximately 19 billion gasoline-gallons to 17 billion gasoline-gallons in 2030. Demand forecasts for planning purposes use multiple scenarios, taking into account potential savings in different sectors, expected technological improvements, government mandates, and other factors. With continued inter-agency coordination, accurate forecasting, and research and development, California is expected to adequately supply the state’s forecasted demand increases.

The proposed building is estimated to have an annual energy demand of 2,830 kWh for electricity and 4,816 kBtu for natural gas.26 These estimates factor in the mandatory requirements of the 2016 Title 24, which have since become more stringent with the adoption of the 2019 Title 24. The City anticipates non-residential energy demand to increase by 22.6 percent upon General Plan build out in 2030.27 Transportation energy use in Daly City is expected to decrease upon General Plan build out, in line with increasingly stringent state and federal fuel efficiency regulations.

The project would result in an increase in demand for existing energy resources; however, the increase in demand generated by the 1,204-square foot retail building would be incremental relative to expected increases upon General Plan build out and the estimated statewide increases in energy demand. The project would be required to comply with applicable regulations and City policies that would conserve energy and water and reduce fuel consumption and waste generation.

California’s overall electricity demand is anticipated to increase in the next decade; improvements in efficiency and production capabilities would help mitigate impacts resulting from increased demand. For example, the production of natural gas is anticipated to increase in the future due to recent technological advances and improvements in efficiency. In contrast, demand for natural gas is anticipated to decrease as more energy is generated from renewable sources and efficiency measures

25 For reference, one therm is equivalent to 100 kBtu.
26 California Emissions Estimator Model. Table 8.1 Energy Use by Climate Zone and Land Use Type – Regional Shopping Center Sub Type. September 2016.
27 City of Daly City. General Plan Update Draft Environmental Impact Report. Table 3.6-4. October 2012.
reduce the need for additional generation.28 Based on the above discussion, the existing energy supply and demand described above, and the project’s incremental demand, the proposed project is not anticipated to result in a substantial increase in demand on energy resources in relation to existing supplies. \textit{(Less than Significant Impact)}

\textbf{3.2.2.2 Cumulative Impacts}

\begin{center}
\begin{tabular}{|l|}
\hline
\textbf{Impact EN-C:} & The project would not result in a cumulatively considerable contribution to a significant energy impact. \textit{(Less than Significant Cumulative Impact)} \\
\hline
\end{tabular}
\end{center}

Cumulative energy impacts could occur as a result of the project in combination with the other development projects in Daly City. All projects would use energy during construction; however, the overall construction schedule and process for all projects is designed to be efficient to avoid excess monetary costs. Construction projects in Daly City are required to comply with the CALGreen construction waste management requirements, which would reduce unnecessary or wasteful use of resources during construction. Additionally, all projects include standard Bay Area Air Quality Management District (BAAQMD) measures to lessen idling times of construction equipment, which would further reduce unnecessary energy use during construction. As a result, the construction-related cumulative energy impact of the project would be less than significant.

The proposed project, in conjunction with other larger cumulative developments in Daly City, would increase operational energy use in the City. While energy use would be increased, the proposed project and cumulative projects would be required to meet the energy efficiency standards set forth in Title 24 and CALGreen. As mentioned previously, the energy impacts of anticipated development through 2030 in the City was analyzed in the General Plan EIR and found to be less than significant. The proposed project is consistent with expected growth in the City and would not increase energy demand beyond what was analyzed and planned for in the City. The project, at 1,204 square feet, would make a very minor contribution to expected energy use increases through the General Plan build out year. Operation/occupation of all projects in the cumulative scenario would not result in a substantial increase in demand upon energy resources because their combined energy requirements would not exceed anticipated state, county, or local energy supplies. Therefore, the project would not make a cumulatively considerable contribution to a significant energy impact. \textit{(Less than Significant Cumulative Impact)}

3.3 **NOISE**

The following discussion is based, in part, on a construction noise and vibration assessment prepared by Illingworth & Rodkin, Inc. The assessment, dated August 12, 2020, is included in this DEIR as Appendix B.

3.3.1 **Environmental Setting**

3.3.1.1 **Background Information**

Noise

Factors that influence sound as it is perceived by the human ear, include the actual level of sound, period of exposure, frequencies involved, and fluctuation in the noise level during exposure. Noise is measured on a decibel scale, which serves as an index of loudness. The zero on the decibel scale is based on the lowest sound level that the healthy, unimpaired human ear can detect. Each 10 decibel increase in sound level is perceived as approximately a doubling of loudness. Because the human ear cannot hear all pitches or frequencies, sound levels are frequently adjusted or weighted to correspond to human hearing. This adjusted unit is known as the A-weighted decibel, or dBA.

Since excessive noise levels can adversely affect human activities and human health, federal, state, and local governmental agencies have set forth criteria or planning goals to minimize or avoid these effects. Noise guidelines are generally expressed using one of several noise averaging methods, including L_{eq}, DNL, or CNEL. These descriptors are used to measure a location’s overall noise exposure, given that there are times when noise levels are higher (e.g., when a jet is taking off from an airport or when a leaf blower is operating) and times when noise levels are lower (e.g., during lulls in traffic flows on freeways or in the middle of the night). L_{max} is the maximum A-weighted noise level during a measurement period.

Vibration

Ground vibration consists of rapidly fluctuating motions or waves with an average motion of zero. Vibration amplitude can be quantified using Peak Particle Velocity (PPV), which is defined as the maximum instantaneous positive or negative peak of the vibration wave. PPV has been routinely used to measure and assess ground-borne construction vibration. Studies have shown that the threshold of perception for average persons is in the range of 0.008 to 0.012 inches/second (in/sec) PPV.

29 L_{eq} is a measurement of average energy level intensity of noise over a given period of time. Day-Night Level (DNL) is a 24-hour average of noise levels, with a 10 dB penalty applied to noise occurring between 10:00 PM and 7:00 AM. Community Noise Equivalent Level (CNEL) includes an additional five dB applied to noise occurring between 7:00 PM and 10:00 PM. Where traffic noise predominates, the CNEL and DNL are typically within two dBA of the peak-hour L_{eq}.
3.3.1.2 Regulatory Framework

Federal

Federal Transit Administration Vibration Limits

The Federal Transit Administration (FTA) has developed vibration impact assessment criteria for evaluating vibration impacts associated with transit projects. The FTA has proposed vibration impact criteria based on maximum overall levels for a single event. The impact criteria for groundborne vibration are shown in Table 3.3-1 below. There are established criteria for frequent events (more than 70 events of the same source per day), occasional events (30 to 70 vibration events of the same source per day), and infrequent events (less than 30 vibration events of the same source per day). These criteria can be applied to development projects in jurisdictions that lack vibration impact standards.

<table>
<thead>
<tr>
<th>Land Use Category</th>
<th>Groundborne Vibration Impact Levels (VdB inch/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequent Event</td>
</tr>
<tr>
<td>Category 1:</td>
<td></td>
</tr>
<tr>
<td>Buildings where</td>
<td></td>
</tr>
<tr>
<td>vibration would</td>
<td></td>
</tr>
<tr>
<td>interfere with</td>
<td></td>
</tr>
<tr>
<td>interior</td>
<td>65</td>
</tr>
<tr>
<td>operations</td>
<td></td>
</tr>
<tr>
<td>Category 2:</td>
<td></td>
</tr>
<tr>
<td>Residences and</td>
<td></td>
</tr>
<tr>
<td>buildings where</td>
<td></td>
</tr>
<tr>
<td>people normally</td>
<td></td>
</tr>
<tr>
<td>sleep</td>
<td>72</td>
</tr>
<tr>
<td>Category 3:</td>
<td></td>
</tr>
<tr>
<td>Institutional</td>
<td></td>
</tr>
<tr>
<td>land uses with</td>
<td></td>
</tr>
<tr>
<td>primarily</td>
<td>75</td>
</tr>
<tr>
<td>daytime use</td>
<td></td>
</tr>
</tbody>
</table>

State

California Green Building Standards Code

For commercial uses, CALGreen (Section 5.507.4.1 and 5.507.4.2) requires that wall and roof-ceiling assemblies exposed to the adjacent roadways have a composite STC rating of at least 50 or a composite OITC rating of no less than 40, with exterior windows of a minimum STC of 40 or OITC of 30 when the commercial property falls within the 65 dBA L_{dn} or greater noise contour for a freeway or expressway, railroad, or industrial or stationary noise source. The state requires interior noise levels to be maintained at 50 dBA L_{eq(1-hr)} or less during hours of operation at a proposed commercial use.
Local

Comprehensive Airport Land Use Compatibility Plan for the Environs of the San Francisco International Airport

The Comprehensive Airport Land Use Compatibility Plan for the Environs of San Francisco International Airport (ALUCP) was completed in November 2012. The ALUCP sets forth standards and policies, in compliance with various federal, state, and local laws, for land use compatibility with airport activities. The AIA is a composite of areas surrounding the airport that are affected by noise, height, and safety considerations. The project site is located within the AIA and outside of the 65 dB CNEL noise contours.30

Daly City 2030 General Plan

The General Plan includes policies for the purpose of avoiding or mitigating impacts resulting from planned development projects with the City. The following policies are specific to noise and vibration and are applicable to the proposed project.

<table>
<thead>
<tr>
<th>Policies</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task NE-3.1</td>
<td>Continue to enforce the environmental noise requirements of the State Building Code (Title 24).</td>
</tr>
<tr>
<td>Task NE-5.1</td>
<td>Additional noise studies should be conducted in “Conditionally Acceptable” noise environments to ensure adequate mitigation features are employed. Usually conventional construction with closed windows and fresh air supply systems will maintain a healthy noise environment.</td>
</tr>
<tr>
<td>Task NE-2.1</td>
<td>Use the Noise Control Guidelines to assess the suitability of a site for new development in combination with the noise contours to accurately identify areas that may need additional noise study and mitigation. Noise mitigations include additional insulation, double glazing of windows and increasing building setbacks from the noise source. Mitigations should also be creative and attractive whenever possible and appropriate. Creative noise mitigation measures can include incorporation of fountains using water to mask freeway noise and noise walls of an appropriate scale painted with decorative murals.</td>
</tr>
<tr>
<td>Policy NE-1</td>
<td>Use the future noise contour map to identify existing and potential noise impact areas.</td>
</tr>
<tr>
<td>Policy NE-9</td>
<td>Work to ensure that the expansion of or changes to existing land uses do not create additional noise impacts for sensitive receptors in the vicinity of the project from intensification or alteration of existing land uses by requiring applicants</td>
</tr>
<tr>
<td>Task NE-9.1</td>
<td>Depending upon the hours of operation, intensity of use, and the location of sensitive receptors in the area, the expansion or change of use could cause noise impacts. Acoustical studies should be performed, at the applicant's expense, during the discretionary and environmental review processes and conditions should be placed on the project accordingly.</td>
</tr>
<tr>
<td>Task NE-11.3</td>
<td>Require all future development within the Airport Influence Area B boundary for San Francisco International Airport to conform to the relevant height/airspace protection, aircraft noise, and safety policies and land use compatibility criteria contained within the most recent</td>
</tr>
</tbody>
</table>

City of Daly City Municipal Code

Title 9 – Public Peace, Morals and Welfare

Chapter 9.22 of the City’s Municipal Code discusses disturbing the peace. While noise level restrictions are not provided in the Municipal Code, the following sections establish quantitative noise disturbances and hours of sensitivity applicable to the proposed project:

9.22.010 – Disturbing the peace prohibited. No person shall make in any place, nor allow to be made upon his premises, or premises within his control, any noise, disorder, or tumult to the disturbance of the public peace.

9.22.030 – Noise. Between the hours of ten p.m. (10:00 p.m.) and six a.m. (6:00 a.m.) of the following day, no person shall cause, create or permit any noise, music, sound or other disturbance upon his property which may be heard by, or which noise disturbs or harasses, any other person beyond the confines of the property, quarters, or apartment from which the noise, music, sound or disturbance emanates.

Title 17 – Zoning

Title 17 of the Daly City Municipal Code provides for discretionary review of projects through the use permit and variance process. An application for development is analyzed in light of many concerns including comparing the proposed use against the noise contours and Noise Compatibility Guidelines. The Planning Division attaches conditions of project approval to reduce noise impacts to future occupants of the proposed development as well as conditioning times construction activities may occur in order to reduce noise impacts to surrounding land uses.

3.3.1.3 Existing Conditions

The project site is bounded by San Pedro Road to the north and west, Hill Street to the east, and a car dealership to the south. The BART railroad tracks are located across Hill Street to the east of the site. Other surrounding land uses include commercial uses across San Pedro Road to the north and west, and residential and institutional uses further east of the railroad tracks. The ambient noise environment at the site is primarily defined by vehicle traffic on adjacent roadways and BART train activity. According to the General Plan EIR, the existing noise levels at the site range between 70 to 75 dB CNEL. The site is located outside of the 65 dB CNEL noise contours for SFO and airport flyovers only intermittently influence noise levels at the site.

3.3.2 Impact Discussion

For the purpose of determining the significance of the project’s impact on noise, would the project result in:

31 City of Daly City. General Plan Update Draft Environmental Impact Report. Figure 3.10-2. October 2012.
1) Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

2) Generation of excessive groundborne vibration or groundborne noise levels?

3) For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

3.3.2.1 Project Impacts

Impact NOI-1: The project would not result in generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies. (Less than Significant Impact)

Construction

The City’s Municipal Code limits construction to weekdays between 6:00 a.m. and 10:00 p.m. Additionally, the General Plan notes that typically, construction activities are limited to daytime hours between 8:00 a.m. and 5:00 p.m. and are prohibited on weekends and holidays. The City does not specify quantitative thresholds for temporary construction noise increases but the threshold for speech interference indoors is 45 dBA. Assuming a 15 dBA exterior-to-interior reduction for standard residential construction and a 25 dBA exterior-to-interior reduction for standard commercial construction, this would correlate to an exterior threshold of 60 dBA L_{eq} at residential land uses and 70 dBA L_{eq} at commercial land uses. Additionally, temporary construction noise would be annoying to individuals at surrounding land uses if the ambient noise environment is increased by at least five dBA L_{eq} for an extended period of time (i.e., one year or longer). Therefore, temporary construction noise would be considered significant if project construction activities exceed 60 dBA L_{eq} at nearby residences or 70 dBA L_{eq} at nearby commercial uses and exceed the ambient noise environment by five dBA L_{eq} for longer than one year.

Construction activities generate considerable amounts of noise when heavy equipment is used. Typical hourly average construction generated noise levels are about 80 dBA to 90 dBA measured at a distance of 50 feet from the source during busy construction periods (e.g., earth moving equipment, impact tools, etc.). Construction generated noise levels drop off at a rate of about six dBA per doubling of distance between the source and receptor. Construction noise impacts primarily result when construction activities occur during noise-sensitive times of day (e.g., early morning, evening, or nighttime hours), the construction occurs in areas immediately adjoining noise-sensitive land uses, or when construction lasts over extended periods of time.

Construction of the proposed project would take approximately nine months to complete. The project would increase the temporary noise levels in the area due to construction activities such as grading, paving, and trenching for utility connections. The significance of noise impacts during construction depends on the noise generated by various pieces of construction equipment, the timing and duration...
of noise generating activities, and the distance between construction noise sources and noise sensitive receptors. Specific quantities of equipment to be used for project construction were not available at the time of the noise assessment. The noise levels generated by typical construction activities are shown below in Table 3.3-2.

| Table 3.3-2: Typical Ranges of Construction Noise Levels at 50 Feet, L\text{eq} (dBA) |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| Domestic Housing | Office Building, Hotel, Hospital, School, Public Works | Industrial Parking Garage, Religious Amusement & Recreations, Store, Service Station | Public Works Roads & Highways, Sewers, and Trenches |
| Ground Clearing | I | II | I | II | I | II | I | II |
| Ground Clearing | 83 | 83 | 84 | 84 | 84 | 84 | 84 | 84 |
| Excavation | 88 | 75 | 89 | 79 | 89 | 71 | 88 | 78 |
| Foundations | 81 | 81 | 78 | 78 | 77 | 77 | 88 | 88 |
| Erection | 81 | 65 | 87 | 75 | 84 | 72 | 79 | 78 |
| Finishing | 88 | 72 | 89 | 75 | 89 | 74 | 84 | 84 |

\textbf{I} - All pertinent equipment present at site.

\textbf{II} - Minimum required equipment present at site.

As seen in Table 3.3-2, typical hourly average construction noise levels at a distance of 50 feet for construction of a retail store would be expected to reach between 77 to 89 dBA L\text{eq}, when all pertinent equipment is present on-site, and between 71 and 83 dBA L\text{eq} when the minimum required equipment is present on-site.

The areas surrounding the site are primarily commercial. The nearest commercial buildings to the site are located approximately 80 feet to the north and west across San Pedro Road. The nearest building in the adjacent car dealership is located approximately 175 feet to the south of the site. The nearest residences are located approximately 190 feet to the east of the site. Average construction noise levels emanating from the site would reach approximately 64 to 82 dBA L\text{eq} at the nearest commercial buildings to the north/west, approximately 59 to 77 dBA L\text{eq} at the car dealership to the south, and approximately 58 to 76 dBA L\text{eq} at the nearest residences to the east.

Construction noise levels could exceed 60 dBA L\text{eq} at nearby residential uses and 70 dBA L\text{eq} at nearby commercial uses. As mentioned in Section 3.3.1.2 Existing Conditions, the project site is located within the City’s 70 to 75 dBA CNEL noise level contours. Thus, construction noise is not anticipated to exceed the ambient noise levels by five dBA L\text{eq} or greater at nearby land uses during the bulk of construction. Additionally, project construction would not last for a period of greater than one year. While the project would not meet the significance criteria for a temporary construction noise impact, the following best management practices are recommended as conditions of approval to reduce noise disturbances from construction activities at nearby land uses:
Conditions of Approval

- Construction activities shall be limited to the hours between 8:00 a.m. and 5:00 p.m., Monday through Friday, and prohibited on weekends and holidays in accordance with the City’s General Plan, unless permission is granted with a development permit or other planning approval.
- Equip all internal combustion engine-driven equipment with intake and exhaust mufflers that are in good condition and appropriate for the equipment.
- Unnecessary idling of internal combustion engines should be strictly prohibited.
- Locate stationary noise-generating equipment, such as air compressors or portable power generators, as far as possible from nearby receptors. If they must be located near receptors, adequate muffling (with enclosures where feasible and appropriate) shall be used to reduce noise levels at nearby receptors. Any enclosure openings or venting shall face away from receptors.
- Utilize “quiet” air compressors and other stationary noise sources where technology exists.
- Control noise from construction workers’ radios to a point where they are not audible at existing structures bordering the project site.
- The contractor shall prepare a detailed construction plan identifying the schedule for major noise-generating construction activities. The construction plan shall identify a procedure for coordination with adjacent land uses so that construction activities can be scheduled to minimize noise disturbance.
- Neighbors located adjacent to the construction site shall be notified of the construction schedule in writing.
- Designate a “disturbance coordinator” who would be responsible for responding to any complaints about construction noise. The disturbance coordinator will determine the cause of the noise complaint (e.g., bad muffler, etc.) and will require that reasonable measures be implemented to correct the problem. Conspicuously post a telephone number for the disturbance coordinator at the construction site and include it in the notice sent to neighbors regarding the construction schedule.

Temporary construction noise would not exceed ambient noise levels by more than five dBA or last longer than one year. The project would be conditioned to implement construction best management practices to reduce noise disturbances, as described above. Therefore, the impact would be less than significant. (Less than Significant Impact)

Operation

Project-Generated Traffic Noise

Daly City considers a project-generated traffic noise impact significant if the project will result in a substantial permanent increase in ambient noise levels (three dB or more) above acceptable noise levels, which would impact existing sensitive and anticipated sensitive receptors. Vehicular traffic on roadways in the City are anticipated to increase as development occurs and the population increases; however, the proposed project would have to double the existing traffic volume in the area to substantially increase noise levels by three dB or more. As described in Section 3.4 Transportation, the traffic from the project would result in 45 daily traffic trips. This would not be sufficient to
double traffic volumes on any adjacent roadways. Therefore, project-generated traffic noise would not result in a substantial permanent increase in ambient noise levels.

Site Maintenance, Deliveries, and Trash Collection

The project would also include other periodic noise like trash service, delivery vehicles, landscape maintenance, etc. These are typical of an urban environmental and would not result in a substantial permanent increase in ambient noise levels.

Stationary Noise Sources

The project does not include a back-up generator, rooftop mechanical equipment, or other stationary noise sources which would substantially increase ambient noise levels. For this reason and those described above, operation of the project would not result in a significant noise impact. (Less than Significant Impact)

| Impact NOI-2: | The project would not result in generation of excessive groundborne vibration or groundborne noise levels. (Less than Significant Impact) |

The City of Daly City does not specify a construction vibration limit. For structural damage, Caltrans recommends a vibration threshold of 0.5 in/sec PPV at which there is a risk of damage to new residential and modern commercial/industrial structures, 0.3 in/sec PPV for older residential structures, and conservative limit of 0.25 in/sec PPV for historic and older buildings. There are no historic buildings in the vicinity of the site. The 0.5 in/sec PPV vibration limit would be applicable to commercial structures in the vicinity of the site and the 0.3 in/sec PPV vibration limit would be applicable to residential structures in the vicinity of the site.

Construction activities of the proposed project would not involve demolition, impact pile driving, bulldozing, or other heavy-duty activities that typically generate the greatest vibrational frequency. In addition, the project would not include excavation aside from the minor trenching required to establish utility connections. Nonetheless, construction of the project may generate perceptible vibration when heavy equipment is used. Construction activities would include site preparation, grading and excavation, trenching and foundation, building (exterior), interior/architectural coating, and paving. Credible worst-case vibration levels were calculated at the nearest buildings surrounding the site, as measured from the project’s boundaries. As described previously, the closest buildings to the north/west are located approximately 80 feet from the site, the nearest buildings in the automobile dealership to the south are located approximately 170 feet from the site, and the nearest residential buildings to the east are located approximately 190 feet from the site. Vibration levels at each of the adjacent land uses is shown below in Table 3.3-3.
Table 3.3-3: Vibration Source Levels for Construction Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Reference PPV at 25 ft. (in/sec)</th>
<th>PPV at 80 ft. (in/sec)</th>
<th>PPV at 170 ft. (in/sec)</th>
<th>PPV at 190 ft. (in/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clam shovel drop</td>
<td>0.202</td>
<td>0.056</td>
<td>0.025</td>
<td>0.022</td>
</tr>
<tr>
<td>Hydromill (slurry wall)</td>
<td>0.008</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>in soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in rock</td>
<td>0.017</td>
<td>0.005</td>
<td>0.002</td>
</tr>
<tr>
<td>Vibratory Roller</td>
<td>0.210</td>
<td>0.058</td>
<td>0.025</td>
<td>0.023</td>
</tr>
<tr>
<td>Hoe Ram</td>
<td>0.089</td>
<td>0.025</td>
<td>0.011</td>
<td>0.010</td>
</tr>
<tr>
<td>Large bulldozer</td>
<td>0.088</td>
<td>0.025</td>
<td>0.011</td>
<td>0.010</td>
</tr>
<tr>
<td>Caisson drilling</td>
<td>0.089</td>
<td>0.025</td>
<td>0.011</td>
<td>0.010</td>
</tr>
<tr>
<td>Loaded trucks</td>
<td>0.076</td>
<td>0.021</td>
<td>0.009</td>
<td>0.008</td>
</tr>
<tr>
<td>Jackhammer</td>
<td>0.035</td>
<td>0.010</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Small bulldozer</td>
<td>0.003</td>
<td>0.001</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

As seen in the table above, construction vibration levels would not exceed the 0.3 in/sec PPV limit at any surrounding residential structures or the 0.5 in/sec PPV limit at any surrounding commercial structures. Therefore, the project would not result in excessive groundborne vibration or groundborne noise levels. **(Less than Significant Impact)**

Impact NOI-3:
The project would not be located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport. The project would not expose people residing or working in the project area to excessive noise levels. **(Less than Significant Impact)**

The project site is located within the AIA for SFO. However, the site is outside of the 65 dB CNEL noise contours for the airport. Therefore, the project would not expose people residing or working in the project area to excessive noise levels due to airport activities. **(Less than Significant Impact)**

3.3.2.2 Cumulative Impacts

Impact NOI-C: The project would not result in a cumulatively considerable contribution to a significant noise impact. **(Less than Significant Cumulative Impact)**

Construction of the proposed project and the projects listed in the cumulative project table (Table 3.0-1) may occur at the same time such that temporary construction-related noise impacts could occur. However, the majority of the surrounding projects are significant distances away from the proposed project, which would reduce any overlapping construction noises or vibration. In addition, during the development review process all projects in the City are required to analyze project-specific noise impacts and incorporate mitigation measures to reduce these impacts to the extent feasible. Once operational, the proposed project would make a negligible contribution to noise.

33 City/County Association of Governments of San Mateo County. *Comprehensive Airport Land Use Plan for the Environs of San Francisco International Airport*. November 2012.
impacts in the area because no significant noise-producing uses are proposed and the vehicle trips resulting from the project would be minor in relation to existing traffic volumes. Furthermore, the City of Daly City 2030 General Plan EIR concluded that adherence to General Plan policies and Municipal Code requirements would ensure that noise impacts from build out of the General Plan would be less than significant. The project is consistent with the development assumptions analyzed in the 2030 General Plan EIR. For these reasons, the project’s contribution to cumulative noise and vibration impacts would be less than significant. (Less than Significant Cumulative Impact)
3.4 TRANSPORTATION

The following discussion is based, in part, on a Site Access Review prepared for the proposed project by Hexagon Transportation Consultants, Inc. The memorandum, dated August 5, 2020, is included in this DEIR as Appendix C.

3.4.1 Environmental Setting

3.4.1.1 Regulatory Framework

State

Senate Bill 743

SB 743 establishes criteria for determining the significance of transportation impacts using a vehicle miles traveled (VMT) metric intended to promote the reduction of GHG emissions, the development of multimodal transportation networks, and a diversity of land uses. Specifically, SB 743 requires the replacement of automobile delay—described solely by level of service (LOS) or similar measures of vehicular capacity or traffic congestion—with VMT as the recommended metric for determining the significance of transportation impacts. The Governor’s Office of Planning and Research (OPR) approved the CEQA Guidelines implementing SB 743 on December 28, 2018. Local jurisdictions are required to implement a VMT policy by July 1, 2020. OPR released a Technical Advisory on Evaluating Transportation Impacts in CEQA (Technical Advisory) in December 2018, which provides guidance to lead agencies when adopting thresholds of significance and screening criteria for VMT impacts. Daly City is currently in the process of adopting a VMT policy pursuant to SB 743.

SB 743 did not authorize OPR to set specific VMT impact thresholds, but it did direct OPR to develop guidelines for jurisdictions to utilize. CEQA Guidelines Section 15064.3(b)(1) describes factors that might indicate whether a development project’s VMT may be significant. Notably, projects located within 0.5-mile of transit should be considered to have a less than significant transportation impact based on OPR guidance. Additionally, OPR’s Technical Advisory states that projects which generate less than 110 vehicle trips per day should be presumed to have a less than significant VMT impact.

Regional and Local

Regional Transportation Planning

The Metropolitan Transportation Commission (MTC) is the transportation planning, coordinating, and financing agency for the nine-county San Francisco Bay Area, including San Mateo County. MTC is charged with regularly updating the Regional Transportation Plan, a comprehensive blueprint for the development of mass transit, highway, airport, seaport, railroad, bicycle, and pedestrian facilities in the region. MTC and ABAG adopted Plan Bay Area 2040 in July 2017, which includes the region’s Sustainable Communities Strategy (integrating transportation, land use, and housing to meet GHG reduction targets set by CARB) and Regional Transportation Plan (including a regional transportation investment strategy for revenues from federal, state, regional and local sources).
City/County Association of Governments

The City/County Association of Governments of San Mateo County (C/CAG) works on issues that affect the quality of life in general: transportation, air quality, stormwater runoff, airport/land use compatibility planning, hazardous waste, solid waste and recycling. C/CAG, as the Congestion Management Agency for San Mateo County, is required to prepare and adopt a Congestion Management Program (CMP) on a biennial basis. The purpose of the CMP is to identify strategies to respond to future transportation needs, develop procedures to alleviate and control congestion, and promote countywide solutions. The CMP is required to be consistent with the MTC planning process that includes regional goals, policies, and projects for the Regional Transportation Improvement Program. 34 A project is required to submit a Transportation Demand Management (TDM) plan in compliance with the CMP guidelines if the project will generate 100 net new peak hour vehicle trips to the CMP roadway network.

Daly City Level of Service Standards

The intersection analysis for signalized intersections is based on the 2010 Highway Capacity Manual LOS methodology. This method evaluates signalized intersection operations on the basis of average control delay time for all vehicles at the intersection. The City’s General Plan has established that if the addition of project traffic degrades an intersection LOS to below LOS D during weekday morning and evening peak traffic periods, the project would have an adverse effect on traffic. For intersections operating at LOS E or F, any increase in delay is considered an adverse effect. The correlation between the levels of service and average control delay for signalized intersections is shown in Table 3.4-1 below.

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Description</th>
<th>Average Control Delay Per Vehicle (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Signal progression is extremely favorable. Most vehicles arrive during the green phase and do not stop at all. Short cycle lengths may also contribute to the very low vehicle delay</td>
<td>10.0 or less</td>
</tr>
<tr>
<td>B</td>
<td>Operations characterized by good signal progression and/or short cycle lengths. More vehicles stop compared to LOS A, causing high levels of average vehicle delay.</td>
<td>10.1 to 20.0</td>
</tr>
<tr>
<td>C</td>
<td>Higher delays may result from fair signal progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant, though may still pass through the intersection without stopping.</td>
<td>20.1 to 35.0</td>
</tr>
<tr>
<td>D</td>
<td>The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable signal progression, long cycle lengths, or high volume-to-capacity (V/C) ratios. Many vehicles stop and individual cycle failures are noticeable.</td>
<td>35.1 to 55.0</td>
</tr>
</tbody>
</table>

Table 3.4-1: Signalized Intersection Level of Service Standards

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Description</th>
<th>Average Control Delay Per Vehicle (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>This is considered to be the limit of acceptable delay. These high delay values generally indicate poor signal progression, long cycle lengths, and high V/C ratios. Individual cycle failures occur frequently.</td>
<td>55.1 to 80.0</td>
</tr>
<tr>
<td>F</td>
<td>This level of delay is considered unacceptable by most drivers. This condition often occurs with oversaturation, that is, when arrival flow rates exceed the capacity of the intersection. Poor progression and long cycle lengths may also be major contributing causes of such delay levels</td>
<td>Greater than 80.0</td>
</tr>
</tbody>
</table>

3.4.1.2 Existing Conditions

Roadway Network

The project site is vacant and does not generate any vehicle trips. Regional access to the project site would be provided by I-280 and El Camino Real (Mission Street/SR 82). Local access to the project site would be provided by San Pedro Road and Hill Street. San Pedro Road is a two-way, four-lane road divided by raised pavement markers (yellow buttons). In the eastbound direction, San Pedro Road intersects El Camino Real before becoming East Market Street. In the westbound direction, San Pedro Road crosses over I-280 before becoming Eastmoor Avenue. Hill Street extends from San Pedro Road until its terminus at D Street and the Colma SamTrans parking lot.

Pedestrian and Bicycle Facilities

Pedestrian facilities include sidewalks, crosswalks, and pedestrian signals. The project site is bordered by sidewalks on both the San Pedro Road and Hill Street frontages. Continuous sidewalks are provided on both sides of the street in the site vicinity. Pedestrian signal heads and crosswalks are provided at the northern boundary of the site to allow pedestrian crossings of Hill Street and San Pedro Road. No direct crossing of San Pedro Road is provided from the site; pedestrians would have to first cross Hill Street to use the crosswalk across San Pedro Road.

Bicycle facilities include paths (Class I), lanes (Class II), and routes (Class III). Bicycle paths are paved trails that are separate from roadways. Bicycle lanes are lanes on roadways designated for bicycle use by striping, pavement legends, and signs. Bicycle routes are roadways designated for bicycle use by signs only. There are no bike paths, lanes, or routes on the adjacent roadways.

Transit Facilities

Public transportation in Daly City is provided by BART, San Mateo County Transit District (SamTrans), and San Francisco Municipal Railway (MUNI). BART connects the San Francisco Peninsula with Oakland, Berkeley, Fremont, Walnut Creek, Dublin/Pleasanton, and other East Bay cities via above- and below-ground heavy rail. The project site is located approximately 0.1-mile north of the Colma BART Station. The station is accessible from Albert M. Teglia Boulevard, which intersects with Hill Street just south of the project site. Other nearby transit facilities include a bus stop immediately adjacent to the site on San Pedro Road which serves SamTrans routes 24, 121, and 122.
Existing Traffic Conditions

The traffic study completed traffic counts at the intersection of San Pedro Road and Hill Street in October 2019 to determine existing traffic conditions at this intersection. In addition, existing traffic operations were also observed to note any operational issues. The study intersection was found to currently be operating at an acceptable LOS A during both peak hours. The average traffic delay is 7.6 seconds and 8.5 seconds in the AM and PM peak hours, respectively. Based on observation of the intersection, eastbound traffic queued for the San Pedro Road/Hill Street intersection would block the proposed project’s exit driveway on San Pedro Road while waiting for the red light at the traffic signal.

3.4.2 Impact Discussion

For the purpose of determining the significance of the project’s impact on transportation, would the project:

1) Conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadways, bicycle lanes, and pedestrian facilities?
2) Conflict or be inconsistent with CEQA Guidelines Section 15064.3, subdivision (b)?
3) Substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible land uses (e.g., farm equipment)?
4) Result in inadequate emergency access?

3.4.2.1 Project Impacts

Impact TRN-1: The project would not conflict with a program, plan, ordinance or policy addressing the circulation system, including transit, roadways, bicycle lanes, and pedestrian facilities. (Less than Significant Impact)

The City of Daly City does not currently have an adopted VMT policy. The City’s adopted transportation policy utilizes level of service (LOS) as the metric by which the City determines the functionality of the roadway system and the effect of new development on the roadway network. The following discussion of LOS is provided as it pertains to consistency with the City’s adopted transportation policy.

Roadway Impacts

The magnitude of traffic added to the roadway system by a development is estimated by multiplying the applicable trip generation rates by the size of the development. The trip generation rates published in the Institute of Transportation Engineers’ (ITE) manual entitled Trip Generation, 10th Edition (2016) for “Shopping Center” were used to represent the proposed project. While the specific use of the proposed retail project is not yet known, shopping center has generally been used for unknown retail projects. Using this rate, the project is estimated to generate approximately 45 daily vehicle trips, with one trip occurring during the AM peak hour (i.e., most congested 60 minutes in the morning, with other trips occurring at other times during the morning) and five trips occurring the PM peak hour.
The study intersection (San Pedro Road/Hill Street) was evaluated for consistency with the City’s level of service standards. As described in Section 3.4.1.1 Regulatory Framework, the City of Daly City level of service standard for signalized intersections is LOS D or better. The San Pedro Road/Hill Street intersection currently operates at an acceptable LOS A during both AM and PM peak hours and would continue to do so following the addition of project trips. While vehicle delay is no longer considered a significant impact on the environment per changes to CEQA mandated by SB 743, the project would not adversely affect vehicle delay at the adjacent intersection and would not conflict with the City’s LOS policy.

The project would not inhibit implementation of any roadway improvements planned for the area or conflict with any plans or policies addressing roadways. Thus, the project would result in a less than significant impact on roadways. (Less than Significant Impact)

Transit Facilities

The proposed project would not modify or remove access to any transit facilities in the area. As mentioned, the Colma BART station is within walking distance of the site. It can reasonably be expected that employees and patrons could utilize nearby transit services to access the project site; however, this increase in use would be minimal and would not exceed the carrying capacity of nearby transit facilities. The project would be consistent with the site’s land use designation in the BART Station Area Specific Plan and would not preclude the development of additional transit-oriented uses in the area. Therefore, the project would not conflict with any program plan, policy, or ordinance addressing transit facilities. (Less than Significant Impact)

Pedestrian and Bicycle Facilities

The proposed project would develop a vacant infill site with a new retail building. The proposed project would make curb cuts in the existing sidewalk on San Pedro Road and Hill Street but would not interfere with pedestrian circulation in the area by removing sidewalks, crossing signals, or other pedestrian facilities. The project would provide two pedestrian access points to the proposed building. There are no bicycle facilities in the site’s immediate vicinity; as such, the project would not affect any existing bicycle facilities. The project would not interfere with any planned improvements to the City’s pedestrian or bicycle network. Therefore, the project would not conflict with any program plan, policy, or ordinance addressing pedestrian and bicycle facilities. (Less than Significant Impact)

Impact TRN-2: The project would not conflict or be inconsistent with CEQA Guidelines Section 15064.3, subdivision (b). (Less than Significant Impact)

This question pertains specifically to VMT as the means of analyzing transportation impacts of a project. The City of Daly City has not yet adopted a VMT policy. While there are no established thresholds with which to compare project-level VMT to, CEQA Guidelines Section 15064.3, subdivision (b)(1) sets criteria for analyzing transportation impacts of land use projects using the VMT metric; most applicably, projects within 0.5-mile of either an existing major transit stop or a stop along an existing high quality transit corridor should be presumed to cause a less than significant
transportation impact. The proposed project is located approximately 0.1-mile from the Colma BART station, which is a major transit stop. Additionally, OPR’s Technical Advisory advises that projects which generate less than 110 vehicle trips per day should be presumed to have a less than significant VMT impact. As described previously, the proposed project would generate an estimated 45 daily vehicle trips. For these reasons, the proposed project would not result in a significant VMT impact and would not conflict with CEQA Guidelines Section 15064.3, subdivision (b). (Less than Significant Impact)

| Impact TRN-3: | The project would not substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment). (Less than Significant Impact) |

Site Access and Circulation

Site access was evaluated to determine the adequacy of the site’s driveways with regards to traffic volume, vehicle queues, geometric design, and stopping sight distance. On-site vehicular circulation was reviewed in accordance with generally accepted traffic engineering standards and transportation planning principles.

Ingress to the site would be provided via a one-way driveway on Hill Street, and egress would be provided via a right-turn only driveway on San Pedro Road. On-site parking is designed in an angled format to reflect this movement through the site from Hill Street to San Pedro Road. Signage and pavement markings will be provided at both driveways to direct traffic (e.g., “Entry Only” or “Exit Only”). Vehicles accessing the site from San Pedro Road would generally be able to access the site easily by making eastbound right- or westbound left-turns onto Hill Street to access the entry driveway. Vehicles would be able to access the site easily from both directions on Hill Street.

The City of Daly City requires driveways providing access to twenty or fewer parking spaces to have a minimum driveway width of 12 feet. The site plan shows the driveway on Hill Street to be 23 feet in width and the driveway on San Pedro Road to be 19 feet in width. Both driveways provide adequate width for vehicles to enter and exit the site. Additionally, there is a trash enclosure on the southeast corner of the project site. Garbage trucks would turn into the driveway and pick up the garbage and exit via the driveway on San Pedro Road. During this brief period, entrance to the site would be blocked; however, project traffic volumes are very low, and the garbage pick-up would not cause operational problems. The proposed project would not result in a hazardous traffic condition due to vehicles accessing the site.

On-site circulation was reviewed according to generally accepted traffic engineering standards and the Daly City Municipal Code. The Daly City Municipal Code requires parking spaces to be a minimum of 8.5 feet wide and 19 feet in length. It also requires a drive aisle width of 14 feet where 45-degree parking is provided. The proposed project would provide a single drive aisle, measuring 14 feet in width. Five parking spaces, including one accessible space are provided at a 45-degree angle. The parking spaces measure 8.5 feet in width and 19 feet in length. The accessible space measures nine feet in width and 19 feet in length, with an eight-foot wide landing. For the reasons described above, the parking spaces and drive aisle width meet the City’s standards and would not cause hazardous conditions related to on-site circulation.
Traffic Operations at Project Driveways

Based on ITE trip generation rates, the project is expected to have one inbound vehicle during the AM peak hour and two inbound vehicles and three outbound vehicles during the PM peak hour. Inbound vehicles are unlikely to experience any delay. During the PM peak hour, the outbound trips are equivalent to one vehicle leaving the project site every 20 minutes. Due to the minimal increase in vehicle trips generated by the project, the project driveways are unlikely to have any operational issues related to vehicle queuing or vehicle delay.

The intersection of San Pedro Road and Hill Street was observed to have vehicle queues of six vehicles in both AM and PM peak hours. The project exit driveway is approximately 50 feet from the intersection and vehicles exiting the site would be temporarily blocked while vehicles are queued at the intersection. It was observed that vehicles clear the intersection quickly after the signal for the eastbound movement on San Pedro Road turns green. Although vehicles will not be able to exit the driveway while there are vehicles queued on San Pedro Road, they will be able to easily exit after the queue dissipates following the signal change to green. Additionally, as mentioned in Section 3.4.1.2 Existing Conditions, there is an existing bus stop adjacent to the site on San Pedro Road. Similar to queues at the San Pedro Road and Hill Street intersection, buses stopping adjacent to the site may temporarily impede drivers from exiting the site onto San Pedro Road. However, this would be a temporary condition and the low volume of vehicles exiting the site would not result in substantial conflicts with the adjacent bus stop.

The project site design is somewhat unique in that it is a small site on a corner of two streets. However, the access elements of the project site are similar to that of gas stations, such as the 76 gas station west of the site on San Pedro Road. This gas station has driveways that begin approximately 75 feet from the intersection of San Pedro Road and Junipero Serra Boulevard. Queued vehicles block vehicles attempting to exit the gas station parking lot for a short period of time. These site access elements are not uncommon for a smaller site located at a corner. Further, the project would generate much less traffic than a gas station. Therefore, the potential queuing for vehicles exiting onto San Pedro would be less than a typical gas station and would not result in hazardous conditions.

Sight Distance at Project Driveways

The project driveway should be free and clear of any obstructions to provide adequate sight distance, thereby ensuring that exiting vehicles can see pedestrians on the sidewalk and vehicles and bicycles traveling on San Pedro Road. Any landscaping and signage should be placed to ensure an unobstructed view for drivers exiting the site. Providing the appropriate sight distance reduces the likelihood of a collision at a driveway and provides drivers with the ability to locate sufficient gaps in traffic to exit a driveway. The minimum acceptable sight distance is considered the Caltrans stopping sight distance. Sight distance requirements vary depending on roadway speeds. Since there are no posted speed limit signs in the project vicinity, the speed limit is 25 mph. For the driveway on San Pedro Road, the Caltrans stopping sight distance is 200 feet (based on a design speed of 30 mph). Thus, a driver must be able to see 200 feet in the upstream direction of San Pedro Road to locate a sufficient gap to turn out of the driveway. There is no parking allowed on San Pedro Road and there are no roadway curves that could obstruct the vision of exiting drivers. Therefore, the project driveway on San Pedro Road would meet the Caltrans stopping sight distance standard, and sight distance would be adequate at the project exit driveway.
For the reasons described above, the proposed project would not substantially increase hazards due to a geometric design feature. The project site is located in an urban area and does not propose a use which would be incompatible with surrounding land uses. Therefore, the project’s impact would be less than significant. (Less than Significant Impact)

Impact TRN-4: The project would not result in inadequate emergency access. (Less than Significant Impact)

Emergency vehicles would access the site from Hill Street. Hill Street is a public roadway which would provide adequate access to the site for emergency vehicles. There would be no restrictions on emergency vehicle access to the surrounding developments. The final site design would be reviewed for consistency with applicable fire department standards. Therefore, the proposed project would not result in inadequate emergency access. (Less than Significant Impact)

3.4.2.2 Cumulative Impacts

Impact TRN-C: The project would not result in a cumulatively considerable contribution to a significant transportation impact. (Less than Significant Impact)

Cumulative projects in the City of Daly City are anticipated to result in increased traffic volumes, delay, and congestion. The proposed project would generate one AM peak hour trip and five PM peak hour trips. Therefore, the proposed project would only marginally contribute to expected increases in traffic throughout the city. The General Plan EIR identified several intersections (see Tables 3.12-8 and 3.12-9) which would experience significant and unavoidable LOS impacts upon General Plan build out, including John Daly Boulevard/Mission Street/Hillside Boulevard, Mission Street/East Market Street/San Pedro Road, John Daly Boulevard/Junipero Serra Boulevard, and Junipero Serra Boulevard/Washington Street. Traffic from the proposed project would not exacerbate impacts at any of these intersections. The project would have a less than significant VMT impact due to its location within ½-mile of the Colma BART Station and cumulative projects in the area would similarly have less than significant impacts on VMT. The proposed project would not remove or inhibit access to any existing or planned transit, pedestrian, or bicycle facilities. For these reasons, the project would not result in a cumulatively considerable contribution to a significant transportation impact. (Less than Significant Impact)
SECTION 4.0 GROWTH-INDUCING IMPACTS

4.1 INTRODUCTION AND THRESHOLDS:

As stated in the CEQA Guidelines Section 15126.2(e), a project is considered growth-inducing if it would:

- Directly or indirectly foster economic or population growth, or the construction of additional housing in the surrounding environment.
- Remove obstacles to population growth or tax community service facilities to the extent that the construction of new facilities would be necessary.
- Encourage or facilitate other activities that would cause significant environmental effects.

Examples of projects likely to have significant growth-inducing impacts include extensions or expansions of infrastructure systems beyond what is needed to serve project-specific demand, and development of new residential subdivisions or industrial parks in areas that are currently only sparsely developed or are undeveloped.

| Impact GRO-1: | The project would not foster or stimulate significant economic or population growth in the surrounding environment. (Less than Significant Impact) |

4.1.1 Economic or Population Growth

The project site is designated Commercial - Retail and Office (C-RO) and is envisioned for future retail/office development in the 2030 General Plan. The proposed retail project is consistent with its General Plan land use designation and the assumptions which formed the basis of environmental impact analysis of planned growth throughout Daly City in its 2030 General Plan EIR. The project would comprise a small fraction of the total increase in employment uses (approximately 3,990 jobs through 2030) which is expected and planned for in the 2030 General Plan. Implementation of the project would bring approximately four new jobs to the area (using an estimate of three jobs per 1,000 square feet), which would be an incremental increase. Additionally, the economic stimulus provided by the project to the surrounding areas (i.e., employees using nearby retail and services) would not warrant the construction of new off-site facilities to accommodate their needs. For these reasons, the proposed project would not result in a significant growth-inducing impact by fostering economic or population growth over and above what is planned (growth assumptions) and analyzed in the City of Daly City 2030 General Plan EIR. Therefore, the proposed project would not result in any environmentally detrimental or significant growth inducing impacts.

4.1.2 Removal of Obstacles to Growth

The project site is located in an urbanized area of Daly City, and implementation of the project would not result in an expansion of urban services or the pressure to expand beyond the City’s existing boundaries or sphere of influence.

The project would not open undeveloped land to further growth or provide expanded utility capacity that would be available to serve future unplanned development. Development of the project would be
restricted to the site boundaries. Existing utility lines and service providers would be available to serve the project.

The proposed project is consistent with the growth assumptions of the General Plan and would not tax community service facilities to the extent that construction of new facilities would be necessary. The project would not encourage or facilitate other activities that would cause significant environmental effects. For these reasons, the project would not result in a significant growth-inducing impact by removing obstacles to growth.
SECTION 5.0 SIGNIFICANT AND IRREVERSIBLE
ENVIRONMENTAL CHANGES

This section was prepared pursuant to CEQA Guidelines Section 15126.2(c), which requires a
discussion of the significant irreversible changes that would result from the implementation of a
proposed project. Significant irreversible changes include the use of nonrenewable resources, the
commitment of future generations to similar use, irreversible damage resulting from environmental
accidents associated with the project, and irretrievable commitments of resources.

5.1 USE OF NONRENEWABLE RESOURCES

During construction and operation of the project, nonrenewable resources would be consumed.
Unlike renewable resources, nonrenewable resources cannot be regenerated over time. Nonrenewable
resources include fossil fuels and metals. Renewable resources, such as lumber and other wood
byproducts, could also be used.

Energy, as discussed in more detail in Section 3.2, would be consumed during both the construction
and operational phases of the project. The construction phase would require the use of nonrenewable
construction material, such as concrete, metals, plastics, and glass. Nonrenewable resources and
energy would also be consumed during the manufacturing and transportation of building materials,
site preparation, and construction of the building. The operational phase would consume energy for
multiple purposes including building heating and cooling, lighting, appliances, and electronics.
Energy, in the form of fossil fuels, will be used to fuel vehicles traveling to and from the project site.

Development of the project would result in a minor increase in demand for nonrenewable resources.
However, the project would be subject to compliance with statewide green building measures and
local energy efficiency requirements for new development. The project would be subject to Title 24
and CALGreen energy-efficiency requirements. Electricity would be provided to the proposed
building by PCE, which generates its electricity from 85 percent carbon-free sources, with at least 50
percent from renewable sources. The project would have the option to enroll in the ECO100 plan,
which generates its electricity from 100 percent carbon-free, renewable sources. Construction of the
project would comply with the City’s Recycling and Diversion of Construction and Demolition
Debris Ordinance (Municipal Code Section 15.64), which would increase the amount of construction
waste recycled and diverted from landfills. Furthermore, the project is proximate to the Colma BART
Station and other transit stops and future employees could utilize transit services to get to the site
instead of driving. This would contribute to a reduction in gasoline consumption. For these reasons,
the proposed project would minimize the use of nonrenewable energy resources.

5.2 COMMITMENT OF FUTURE GENERATIONS TO SIMILAR USE

The project would be developed on a vacant site that is surrounded by urban development.
Development of the project would commit resources to prepare the site, construct the building and
site improvements, and operate the building. The project would result in a permanent land use change
in the project area, as an undeveloped site would be developed for commercial uses. However, the
project area is already highly developed, and the project would make efficient use of an underutilized
parcel within the City limits. The proposed project would limit development to within the project
boundaries and would not place developmental pressures on surrounding land uses to intensify uses
or convert to alternative land uses. For these reasons, the proposed project would not commit future generations to similar use.

5.3 **IRREVERSIBLE DAMAGE FROM ENVIRONMENTAL ACCIDENTS**

The project does not propose new or uniquely hazardous uses, and its operation would not be expected to cause environmental accidents that would impact other areas. The project would not be located adjacent to any hazardous uses that would be exacerbated by the proposed development. For these reasons, the proposed project would not result in irreversible damage that may result from environmental accidents.

5.4 **IRRETRIEVABLE COMMITMENT OF RESOURCES**

As discussed above under Section 5.1, the project would consume nonrenewable resources during construction and operation. With implementation of the CALGreen Code, Title 24, and compliance with the City’s Municipal Code, the project would minimize its consumption of nonrenewable resources. Furthermore, the project is proximate to the Colma BART Station and future employees would have the option to utilize public transit to access the site. The availability of public transit could contribute to reductions in use of nonrenewable resources, primarily fossil fuels from vehicle travel.
SECTION 6.0 SIGNIFICANT AND UNAVOIDABLE IMPACTS

As discussed throughout this DEIR, the proposed project would not result in any significant and unavoidable impacts.
SECTION 7.0 ALTERNATIVES

7.1 INTRODUCTION

The CEQA Guidelines give extensive direction on identifying and evaluating EIR alternatives to a proposed project (Section 15126.6). The purpose of analyzing alternatives in an EIR is to identify ways to substantially lessen or avoid the significant effects a proposed project may have on the environment. The range of alternatives selected for analysis is governed by the “rule of reason,” which requires the EIR to discuss only those alternatives necessary to permit a reasoned choice. Although the alternatives do not have to meet every goal and objective set for the proposed project, they should “feasibly attain most of the basic objectives of the project.”

The CEQA Guidelines (Section 15126.6) do not require that all possible alternatives be evaluated, only that a range of feasible alternatives be discussed so as to encourage both meaningful public participation and informed decision making. In selecting alternatives to be evaluated, consideration may be given to their potential for reducing significant unavoidable impacts, reducing significant impacts that are mitigated by the project to less than significant levels, and further reducing less than significant impacts.

The three critical factors to consider in selecting and evaluating alternatives are, therefore: (1) the significant impacts from the proposed project which could be reduced or avoided by an alternative, (2) the project’s objectives, and (3) the feasibility of the alternatives available. Each of these factors is described below.

7.1.1 Significant Impacts of the Project

As mentioned above, the CEQA Guidelines advise that the alternatives analysis in an EIR should be limited to alternatives that would avoid or substantially lessen any of the significant effects of the project and would achieve most of the project objectives. Alternatives may also be considered if they would further reduce impacts that are already less than significant because of required or proposed mitigation. The project would not result in any significant impacts and does not include any mitigation measures, therefore there are no obvious environmental issues that would drive the development of a range of alternatives to the project.

Pursuant to CEQA Guidelines Section 15124, the EIR must include a statement of the objectives sought by the proposed project.

7.1.2 Project Objectives

The objectives for the proposed project are as follows:

- Develop the site in alignment with the strategies and goals of the Daly City 2030 General Plan by constructing a retail building on an undeveloped and underutilized site, consistent with General Plan policies and the site’s Commercial - Retail and Office (C-RO) land use designation.
- Provide a project that is consistent with the BART Station Area Specific Plan and the site’s associated Mixed-Use Commercial/Office designation by providing a retail use adjacent to the Colma BART Station that allows for customers and employees to access the site via public transit.

- Beautify and improve the project site while providing a retail use in a manner compatible with the surrounding residential, commercial, and public transit uses.

- Foster economic development and expand the City’s tax base by providing a retail opportunity for residents and visitors of Daly City.

7.2 PROJECT ALTERNATIVES

7.2.1 Feasibility of Alternatives

CEQA, the CEQA Guidelines, and case law on the subject have found that feasibility can be based on a wide range of factors and influences. The Guidelines advise that such factors can include (but are not necessarily limited to) the suitability of an alternate site, economic viability, availability of infrastructure, consistency with a general plan or with other plans or regulatory limitations, jurisdictional boundaries, and whether the project proponent can “reasonably acquire, control or otherwise have access to the alternative site” [Section 15126.6(f)(1)].

7.2.2 Alternatives Considered But Rejected

7.2.2.1 Location Alternative

The CEQA Guidelines encourage consideration of an alternative site when significant effects of the project might be avoided or substantially lessened (Section 15126.6(f)(2)(A)). Only locations that would avoid or substantially lessen any of the significant impacts of the project and meet most of the project objectives need be considered for inclusion in the EIR.

The project proposes to develop a vacant 0.1-acre parcel with an approximately 1,204-square-foot retail building. An alternative site would need to be at least of comparable size, within the urbanized area of Daly City, and have adequate transit access, roadway access, and utility capacity to serve the development proposed. The majority of Daly City is built out and development of a site of similar size could require demolition of existing structures and site redevelopment, as there are few undeveloped sites remaining in the City. In considering an alternative location in an EIR, the CEQA Guidelines advise that the key question is “whether any of the significant effects of the project would be avoided or substantially lessened by putting the project in another location”. No significant effects were identified in the DEIR, and relocating the project to another site may result in additional environmental impacts due to demolition and/or tree removal. Further, the project applicant does not have an alternative site within their control. As a result, no other site alternative was considered. The CEQA Guidelines do not mandate consideration of a location alternative in an EIR.

35 CEQA Guidelines Section 15126.6(f)(2)(A)
7.2.2.2 Reduced Scale Alternative

The project proposes to develop a 0.1-acre site in an urbanized area of Daly City. The project would utilize the entirety of the site for development of the proposed 1,204-square-foot building and surface parking lot. As discussed under Section 7.2.2.3, the project could develop the site at a greater intensity, as permitted by the existing General Plan land use designation and zoning. However, reducing the size of the project is considered infeasible due to the already small scale of development proposed. Further, as described throughout this DEIR, the project results in minimal environmental impacts and reducing the size of the (already very small) project would not substantially lessen any environmental impacts because there are no impacts that are attributable to the very modest scale of the project. Therefore, the reduced scale alternative is not evaluated further.

7.2.2.3 No Parking Alternative

To address site access concerns raised in prior public comments about the project, the project could be redesigned to remove the surface parking lot. This would allow for an increased intensity of development on-site (as the building footprint could be increased) and greater environmental impacts due to construction and visual intrusion. Eliminating on-site parking would not comply with the parking requirements set forth in the City’s Zoning Code. Further, although the project is located in proximity to transit, it is unreasonable to assume that all of the employees and customers would utilize public transit to access the site. For these reasons, a No Parking Alternative is not evaluated further.

7.2.3 Selection of Alternatives

In addition to the No Project Alternative, the CEQA Guidelines advise that the range of alternatives discussed in the EIR should be limited to those that “would avoid or substantially lessen any of the significant impacts of the project” [Section 15126.6(f)]. The discussion below addresses two No Project Alternatives – a No Project/No Development Alternative and a No Project/Existing General Plan/Zoning Development Alternative. These two alternatives are discussed for their potential impacts as compared to the proposed project and ability to achieve the project objectives.

7.2.3.1 No Project Alternative

The CEQA Guidelines specifically require consideration of the No Project Alternative. The purpose of including a No Project Alternative is to allow decision makers to compare the impacts of approving the project with the impacts of not approving the project. The CEQA Guidelines specifically advise that the No Project Alternative is “what would be reasonably expected to occur in the foreseeable future if the project were not approved, based on current plans and consistent with available infrastructure and community services.” The Guidelines emphasize that an EIR should take a practical approach, and not “…create and analyze a set of artificial assumptions that would be required to preserve the existing physical environment [Section 15126.6(e)(3)(B)].”

Currently, the project site is undeveloped and has a land use designation of Commercial - Retail and Office (C-RO) and is envisioned for future retail/office development in the 2030 General Plan. Under the No Project Alternative, the project site could remain as is or it could be developed with commercial/office uses consistent with the site’s General Plan designation and zoning. For these
reasons, there are two possible No Project Alternatives for the project: 1) a No Project/No Development Alternative and 2) a No Project/Existing Plan Development Alternative.

7.2.3.2 No Project/No Development Alternative

The No Project/No Development Alternative would entail the undeveloped site remaining as is. The minor effects of project construction noise, construction/operational energy use, and increased vehicle travel would be eliminated under this alternative; however, none of these effects are identified as significant in this DEIR. Furthermore, leaving the project site undeveloped would be inconsistent with the intended use of the site under the Daly City 2030 General Plan and the BART Station Area Specific Plan, and would neither beautify or improve the site nor provide a retail opportunity with economic benefits. Additionally, given the site’s location in an urban area surrounded by development and within the boundaries of the BART Station Area Specific Plan, it is unrealistic to assume the site would remain vacant for the foreseeable future. Thus, the No Project/No Development Alternative would not meet any of the project objectives.

7.2.3.3 No Project/Existing General Plan/Zoning Development Alternative

The project site is designated Commercial - Retail and Office (C-RO) in the Daly City 2030 General Plan and zoned BC-BART Commercial. The Retail and Office (C-RO) designation consists of retail and office uses both regional and citywide in scope, typically applicable to a wide range of commercial shopping areas. The FAR for land uses with this designation ranges between 2.5 to 5.0 square feet of building area for each square foot of land area, except in the BART Station Area Specific Plan where specific development standards would apply. The BC-BART Commercial zoning district permits a variety of commercial uses, up to maximum heights of 35 feet with minimum lot sizes of 5,000 square feet.

Additionally, the project site is located within the BART Station Area Specific Plan. The Specific Plan designates the site as Mixed-Use Commercial/Office. This designation describes areas where commercial uses are permitted at street level and office uses are permitted above. Typical building heights in this designation are one to two stories, with lot coverage between 35 and 60 percent.

The project proposes an approximately 1,204-square-foot retail building, with a maximum height of 24 feet and lot coverage of 28 percent. As proposed, the project is consistent with the site’s General Plan land use designation and zoning. Allowing the site to be developed consistent with its existing land use designation and zoning would result in land use that would not differ substantially from what is proposed. In fact, this alternative could result in more intensive development on-site, as the project’s proposed height (24 feet) is below the maximum allowable height under the C-RO designation (35 feet) and lot coverage could be increased to up to 60 percent. Environmental impacts under this alternative would likely be similar or greater. Development of commercial uses under this Alternative would be consistent with project objectives.

7.2.3.4 Modified Access Alternative

As proposed, site access would be provided via a one-way driveway on Hill Street and egress would be provided via a right-turn only driveway on San Pedro Road. Vehicles traveling in both eastbound and westbound directions would be able to access the site by turning right or left onto Hill Street and
entering the project driveway. However, vehicles exiting onto San Pedro Road would be limited to right-turn only. In order to access Junipero Serra Boulevard (a major thoroughfare) from the site, vehicles would have to utilize other surface streets (e.g., Washington Street or D Street) in a circuitous travel pattern. To address this circulation issue, a Modified Access Alternative was evaluated. Under this alternative, the project’s ingress and egress points would be switched; ingress would be provided via a right-turn only driveway on San Pedro Road and egress would be provided via a driveway on Hill Street.

The Modified Access Alternative would provide for good accessibility from eastbound San Pedro Road, as vehicles would be able to turn directly into the project site. This alternative would also eliminate the potential for exiting drivers to disobey the existing double yellow divide on San Pedro Road and turn left onto San Pedro Road. However, vehicles traveling westbound on San Pedro Road would not be able to access the site directly from San Pedro Road because left turns into the project driveway would be prohibited, and the Hill Street driveway would only provide egress. These vehicles would have to turn right onto Washington Street before the site, turn left on Junipero Serra Boulevard, and left back onto San Pedro Road to access the site. Alternatively, these vehicles could turn left onto Hill Street and continue south to D Street before turning right onto Junipero Serra Boulevard and finally turning right onto San Pedro Road. Therefore, while the project objectives would be achieved under the Modified Access Alternative, similar, if not worse, access issues would remain under this alternative. Furthermore, these access issues have not been identified as significant impacts in the DEIR. This alternative would not substantially lessen any identified significant transportation impacts.

7.2.4 Environmentally Superior Alternative

The CEQA Guidelines state than an EIR shall identify an environmentally superior alternative. If the environmentally superior alternative is the “No Project” alternative, the EIR shall also identify an environmentally superior alternative among the other alternatives (Section 15126.6(e)(2)). As described previously, no significant environmental impacts were identified in the DEIR. The No Project/No Development alternative would avoid any temporary construction dust or noise impacts resulting from the project. Additionally, operational impacts due to increased energy use and vehicle trips would be avoided. Thus, the No Project Alternative would be the environmentally superior alternative, however this alternative would achieve none of the project objectives. Among the other alternatives, the No Project/Existing General Plan/Zoning Alternative could result in a greater intensity of development on-site, which would increase environmental impacts due to additional construction and vehicle trips. The Modified Access Alternative would alleviate some site access issues (which are not environmental impacts unless, for example, requisite off-site improvements result in secondary impacts) but would create additional site access issues which do not occur under the proposed project. Because of the small scale of the project and its infill nature, no significant environmental impacts would occur and there are no project alternatives (aside from the No Project/No Development Alternative) which would be considered environmentally superior.
SECTION 8.0 REFERENCES

The analysis in this Environmental Impact Report is based on the professional judgement and expertise of the environmental specialists preparing this document, based upon review of the site, surrounding conditions, site plans, and the following references:

California Emissions Estimator Model. Table 8.1 Energy Use by Climate Zone and Land Use Type – Regional Shopping Center Sub Type. September 2016.

City/County Association of Governments of San Mateo County. Comprehensive Airport Land Use Plan for the Environs of San Francisco International Airport. November 2012.

San Francisco International Airport. 2019 Noise Exposure Map. August 2015.

SECTION 9.0 LEAD AGENCY AND CONSULTANTS

9.1 LEAD AGENCY

City of Daly City

 Michael Von Lonkuysen, Planning Manager
 Brian Paland, Assistant Planner

9.2 CONSULTANTS

Environmental Consultants and Planners

 Akoni Danielsen, Principal Project Manager
 Danny DeBrito, Associate Project Manager
 Matthew Moore, Assistant Project Manager
 Ryan Osako, Graphic Artist

Hexagon Transportation Consultants, Inc.

 At van den Hout, Vice President
 Daniel Choi, Engineer

Illingworth & Rodkin, Inc.

 Michael Thill, Principal
 Steve Deines, Staff Consultant