Drinking Water Source Assessment

In March 2001, a drilling water source assessment was completed. The assessment showed that all of Daly City’s municipal production wells were at least moderately protected. The SFPUC also showed that all wells were a reasonably expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. Some people may be more sensitive to contaminants in drinking water than the general population. Immunocompromised persons, such as those with severe or compromised immune systems, people who have undergone organ transplant surgery, and people who have received chemotherapy for cancer are especially vulnerable to infections from parasites or viruses in their drinking water. These people should talk with their doctor or other health professional about drinking water. USDWCenters for Disease Control guidelines on appropriate ways to lessen the risks to immunocompromised patients and other sensitive groups is available from the Safe Drinking Water Hotline at 800-426-4772.

Water Conservation

Residents and business continue practicing the drinking water conservation behaviors they have demonstrated since June 2015. Results of a customer satisfaction survey in 2016 showed residents placed a high level of importance in protecting the water quality of the City’s drinking water sources. Continued water uses such as outdoor irrigation and car washing are strongly discouraged.

1. Wash a fountain or other running water system in a fountain or other public place where food and drinks are served, is
2. Use a recirculation system at restaurants, hotels, cafes, or other places where cold water is served.
3. Use a recirculation system for the City’s water conservation program.
4. Use a recirculation system for the City’s water conservation.
5. Use a recirculation system for the City’s water conservation.
6. Use a recirculation system for the City’s water conservation.
7. Use a recirculation system for the City’s water conservation.
8. Use a recirculation system for the City’s water conservation.
9. Use a recirculation system for the City’s water conservation.
10. Use a recirculation system for the City’s water conservation.
11. Use a recirculation system for the City’s water conservation.
12. Use a recirculation system for the City’s water conservation.
13. Use a recirculation system for the City’s water conservation.
14. Use a recirculation system for the City’s water conservation.
15. Use a recirculation system for the City’s water conservation.
16. Use a recirculation system for the City’s water conservation.
17. Use a recirculation system for the City’s water conservation.
18. Use a recirculation system for the City’s water conservation.
19. Use a recirculation system for the City’s water conservation.
20. Use a recirculation system for the City’s water conservation.
21. Use a recirculation system for the City’s water conservation.
22. Use a recirculation system for the City’s water conservation.
23. Use a recirculation system for the City’s water conservation.
24. Use a recirculation system for the City’s water conservation.
25. Use a recirculation system for the City’s water conservation.
26. Use a recirculation system for the City’s water conservation.
27. Use a recirculation system for the City’s water conservation.
28. Use a recirculation system for the City’s water conservation.
29. Use a recirculation system for the City’s water conservation.
30. Use a recirculation system for the City’s water conservation.
31. Use a recirculation system for the City’s water conservation.
32. Use a recirculation system for the City’s water conservation.
33. Use a recirculation system for the City’s water conservation.
34. Use a recirculation system for the City’s water conservation.
35. Use a recirculation system for the City’s water conservation.
36. Use a recirculation system for the City’s water conservation.
37. Use a recirculation system for the City’s water conservation.
38. Use a recirculation system for the City’s water conservation.
39. Use a recirculation system for the City’s water conservation.
40. Use a recirculation system for the City’s water conservation.
41. Use a recirculation system for the City’s water conservation.
42. Use a recirculation system for the City’s water conservation.
43. Use a recirculation system for the City’s water conservation.
44. Use a recirculation system for the City’s water conservation.
45. Use a recirculation system for the City’s water conservation.
46. Use a recirculation system for the City’s water conservation.
47. Use a recirculation system for the City’s water conservation.
48. Use a recirculation system for the City’s water conservation.
49. Use a recirculation system for the City’s water conservation.
50. Use a recirculation system for the City’s water conservation.
51. Use a recirculation system for the City’s water conservation.
52. Use a recirculation system for the City’s water conservation.
53. Use a recirculation system for the City’s water conservation.
54. Use a recirculation system for the City’s water conservation.
55. Use a recirculation system for the City’s water conservation.
56. Use a recirculation system for the City’s water conservation.
57. Use a recirculation system for the City’s water conservation.
58. Use a recirculation system for the City’s water conservation.
59. Use a recirculation system for the City’s water conservation.
60. Use a recirculation system for the City’s water conservation.
61. Use a recirculation system for the City’s water conservation.
62. Use a recirculation system for the City’s water conservation.
63. Use a recirculation system for the City’s water conservation.
64. Use a recirculation system for the City’s water conservation.
65. Use a recirculation system for the City’s water conservation.
66. Use a recirculation system for the City’s water conservation.
67. Use a recirculation system for the City’s water conservation.
68. Use a recirculation system for the City’s water conservation.
69. Use a recirculation system for the City’s water conservation.
70. Use a recirculation system for the City’s water conservation.
71. Use a recirculation system for the City’s water conservation.
72. Use a recirculation system for the City’s water conservation.
73. Use a recirculation system for the City’s water conservation.
74. Use a recirculation system for the City’s water conservation.
75. Use a recirculation system for the City’s water conservation.
76. Use a recirculation system for the City’s water conservation.
77. Use a recirculation system for the City’s water conservation.
78. Use a recirculation system for the City’s water conservation.
79. Use a recirculation system for the City’s water conservation.
80. Use a recirculation system for the City’s water conservation.
81. Use a recirculation system for the City’s water conservation.
82. Use a recirculation system for the City’s water conservation.
83. Use a recirculation system for the City’s water conservation.
84. Use a recirculation system for the City’s water conservation.
85. Use a recirculation system for the City’s water conservation.
86. Use a recirculation system for the City’s water conservation.
87. Use a recirculation system for the City’s water conservation.
88. Use a recirculation system for the City’s water conservation.
89. Use a recirculation system for the City’s water conservation.
90. Use a recirculation system for the City’s water conservation.
91. Use a recirculation system for the City’s water conservation.
92. Use a recirculation system for the City’s water conservation.
93. Use a recirculation system for the City’s water conservation.
94. Use a recirculation system for the City’s water conservation.
95. Use a recirculation system for the City’s water conservation.
96. Use a recirculation system for the City’s water conservation.
97. Use a recirculation system for the City’s water conservation.
98. Use a recirculation system for the City’s water conservation.
99. Use a recirculation system for the City’s water conservation.
100. Use a recirculation system for the City’s water conservation.

Free Water Conservation Devices and Cash Rebates

To encourage ongoing conservation efforts, the Department of Water and Watermelon Resources offers a variety of free water conservation devices, including rain barrels and shower heads for residential customers, and water saving programs for local commercial areas. If you are interested in the water supply, visit the City’s website at www.dalycity.org. Watermelon Resources Department (650) 991-8200. You can also contact the City’s Water Department at (650) 991-8082 for more information on how to save water.

Your water quality is important. If you have questions, or would like more information...

Contacts for Your Questions

To our water customers:

1. Call their water supplier and ask about drinking water from their health care providers. People who...
How you can become involved

To learn more about drinking water quality and the efforts we undertake, sign up for the City of Daly City’s Citizens List, or contact the Water Resources Management Department at (650) 735-7511.

Taste and odor

The water in your home tap is the same as the water that flows into your neighborhood fire hydrant.

Water Quality Data

2019 Daly City Water Quality Report

City of Daly City - Water Quality Data for 2019

Unregulated Contaminant Monitoring Rule (UCMR)

Overall results for Daly City’s 58 water systems were within the detection limit for all UCMR contaminants except lead and copper. In the absence of data on the presence of these contaminants in household water plumbing systems, it is not possible to determine the potential for lead exposure in water that’s been sitting in pipes.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Action Level</th>
<th>MCL</th>
<th>Result</th>
<th>Source Water</th>
<th>Finished Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>15 ppb</td>
<td>15</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Copper</td>
<td>1.3 ppb</td>
<td>0.3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Reducing Lead from Drinking Water

Lead is a highly mobile element that can become a health concern, especially for young children. Children are typically more vulnerable to lead in drinking water than the general population. If you are concerned about the potential for lead exposure in your drinking water, please follow these steps:

1. Let the water run for two minutes before using water for drinking or cooking.
2. Run water at the highest use or faucet for two minutes before using water for drinking or cooking.
3. Use a variety of water outlets to prevent water from stagnating in pipes.

Additional information on lead and copper concentrations in water can be found at USEPA’s website: http://water.epa.gov/}

Water Quality Data

2019 Daly City Water Quality Report

City of Daly City - Water Quality Data for 2019

Unregulated Contaminant Monitoring Rule (UCMR)

Overall results for Daly City’s 58 water systems were within the detection limit for all UCMR contaminants except lead and copper. In the absence of data on the presence of these contaminants in household water plumbing systems, it is not possible to determine the potential for lead exposure in water that’s been sitting in pipes.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Action Level</th>
<th>MCL</th>
<th>Result</th>
<th>Source Water</th>
<th>Finished Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>15 ppb</td>
<td>15</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Copper</td>
<td>1.3 ppb</td>
<td>0.3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Reducing Lead from Drinking Water

Lead is a highly mobile element that can become a health concern, especially for young children. Children are typically more vulnerable to lead in drinking water than the general population. If you are concerned about the potential for lead exposure in your drinking water, please follow these steps:

1. Let the water run for two minutes before using water for drinking or cooking.
2. Run water at the highest use or faucet for two minutes before using water for drinking or cooking.
3. Use a variety of water outlets to prevent water from stagnating in pipes.

Additional information on lead and copper concentrations in water can be found at USEPA’s website: http://water.epa.gov/}

Water Quality Data

2019 Daly City Water Quality Report

City of Daly City - Water Quality Data for 2019

Unregulated Contaminant Monitoring Rule (UCMR)

Overall results for Daly City’s 58 water systems were within the detection limit for all UCMR contaminants except lead and copper. In the absence of data on the presence of these contaminants in household water plumbing systems, it is not possible to determine the potential for lead exposure in water that’s been sitting in pipes.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Action Level</th>
<th>MCL</th>
<th>Result</th>
<th>Source Water</th>
<th>Finished Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>15 ppb</td>
<td>15</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Copper</td>
<td>1.3 ppb</td>
<td>0.3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Reducing Lead from Drinking Water

Lead is a highly mobile element that can become a health concern, especially for young children. Children are typically more vulnerable to lead in drinking water than the general population. If you are concerned about the potential for lead exposure in your drinking water, please follow these steps:

1. Let the water run for two minutes before using water for drinking or cooking.
2. Run water at the highest use or faucet for two minutes before using water for drinking or cooking.
3. Use a variety of water outlets to prevent water from stagnating in pipes.

Additional information on lead and copper concentrations in water can be found at USEPA’s website: http://water.epa.gov/}

Water Quality Data

2019 Daly City Water Quality Report

City of Daly City - Water Quality Data for 2019

Unregulated Contaminant Monitoring Rule (UCMR)

Overall results for Daly City’s 58 water systems were within the detection limit for all UCMR contaminants except lead and copper. In the absence of data on the presence of these contaminants in household water plumbing systems, it is not possible to determine the potential for lead exposure in water that’s been sitting in pipes.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Action Level</th>
<th>MCL</th>
<th>Result</th>
<th>Source Water</th>
<th>Finished Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>15 ppb</td>
<td>15</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Copper</td>
<td>1.3 ppb</td>
<td>0.3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Reducing Lead from Drinking Water

Lead is a highly mobile element that can become a health concern, especially for young children. Children are typically more vulnerable to lead in drinking water than the general population. If you are concerned about the potential for lead exposure in your drinking water, please follow these steps:

1. Let the water run for two minutes before using water for drinking or cooking.
2. Run water at the highest use or faucet for two minutes before using water for drinking or cooking.
3. Use a variety of water outlets to prevent water from stagnating in pipes.

Additional information on lead and copper concentrations in water can be found at USEPA’s website: http://water.epa.gov/}

Water Quality Data

2019 Daly City Water Quality Report

City of Daly City - Water Quality Data for 2019

Unregulated Contaminant Monitoring Rule (UCMR)

Overall results for Daly City’s 58 water systems were within the detection limit for all UCMR contaminants except lead and copper. In the absence of data on the presence of these contaminants in household water plumbing systems, it is not possible to determine the potential for lead exposure in water that’s been sitting in pipes.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Action Level</th>
<th>MCL</th>
<th>Result</th>
<th>Source Water</th>
<th>Finished Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>15 ppb</td>
<td>15</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Copper</td>
<td>1.3 ppb</td>
<td>0.3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Reducing Lead from Drinking Water

Lead is a highly mobile element that can become a health concern, especially for young children. Children are typically more vulnerable to lead in drinking water than the general population. If you are concerned about the potential for lead exposure in your drinking water, please follow these steps:

1. Let the water run for two minutes before using water for drinking or cooking.
2. Run water at the highest use or faucet for two minutes before using water for drinking or cooking.
3. Use a variety of water outlets to prevent water from stagnating in pipes.

Additional information on lead and copper concentrations in water can be found at USEPA’s website: http://water.epa.gov/}

Water Quality Data

2019 Daly City Water Quality Report

City of Daly City - Water Quality Data for 2019

Unregulated Contaminant Monitoring Rule (UCMR)

Overall results for Daly City’s 58 water systems were within the detection limit for all UCMR contaminants except lead and copper. In the absence of data on the presence of these contaminants in household water plumbing systems, it is not possible to determine the potential for lead exposure in water that’s been sitting in pipes.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Action Level</th>
<th>MCL</th>
<th>Result</th>
<th>Source Water</th>
<th>Finished Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>15 ppb</td>
<td>15</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Copper</td>
<td>1.3 ppb</td>
<td>0.3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Reducing Lead from Drinking Water

Lead is a highly mobile element that can become a health concern, especially for young children. Children are typically more vulnerable to lead in drinking water than the general population. If you are concerned about the potential for lead exposure in your drinking water, please follow these steps:

1. Let the water run for two minutes before using water for drinking or cooking.
2. Run water at the highest use or faucet for two minutes before using water for drinking or cooking.
3. Use a variety of water outlets to prevent water from stagnating in pipes.

Additional information on lead and copper concentrations in water can be found at USEPA’s website: http://water.epa.gov/}