GENERAL REQUIREMENTS

A. System size is 10 kW AC CEC rating or less □ Y □ N
B. The solar array is roof-mounted on one- or two-family dwelling or accessory structure □ Y □ N
C. The solar panel/module arrays will not exceed the maximum legal building height □ Y □ N
D. Solar system is utility interactive and without battery storage □ Y □ N
E. The solar panel/module arrays are set clear of plumbing and mechanical vents □ Y □ N
F. Permit application is completed and attached □ Y □ N

ELECTRICAL REQUIREMENTS

No more than four photovoltaic module strings are connected to each Maximum PowerPoint Tracking (MPPT) input where source circuit fusing is included in the inverter □ Y □ N

1) No more than two strings per MPPT input where source circuit fusing is not included □ Y □ N
2) Fuses (if needed) are rated to the series fuse rating of the PV module □ Y □ N
3) No more than one noninverter-integrated DC combiner is utilized per inverter □ Y □ N

A. For central inverter systems: No more than two inverters are utilized □ Y □ N
B. The PV system is interconnected to a single-phase AC service panel of nominal 120/220 Vac with a bus bar rating of 225 A or less. □ Y □ N
C. The PV system is connected to the load side of the utility distribution equipment □ Y □ N
D. A Solar PV Standard Plan and supporting documentation is completed and attached □ Y □ N
E. No ferrous or nonferrous metallic portions of the electrical system shall be in direct contact with the earth. □ Y □ N

STRUCTURAL REQUIREMENTS

A. A completed Structural Criteria and supporting documentation is attached (if required) □ Y □ N

FIRE SAFETY REQUIREMENTS

A. Clear access pathways provided □ Y □ N
B. Fire classification solar system is provided □ Y □ N
C. All required markings and labels are provided □ Y □ N
D. A diagram of the roof layout of all panels, modules, clear access pathways and approximate locations of electrical disconnecting means and roof access points is completed and attached including wiring diagram showing a readily accessible Rapid Shutdown of PV System. □ Y □ N

Notes:
1. These criteria are intended for expedited solar permitting process.
2. If any items are checked NO, revise design to fit within Eligibility Checklist, otherwise permit application shall go through standard process.
Submittal Requirements for Rooftop Solar Photovoltaic Installations
10 kW or Less in One- and Two-Family Dwellings

1. Approval Requirements

The following permits are required to install a solar PV system with a maximum power output of 10 kW or less:

a) Building and Electrical Permit
 Planning review is required for solar PV installations.

b) Separate Electrical Permit required for new or upgraded electrical panels.

c) Separate Building Permit is required for structural upgrade of existing roof framing

2. Submittal Requirements

a) A properly completed building permit application form. The permit application form may be downloaded at www.dalycity.org.

b) Demonstrate compliance with the eligibility checklist for expedited permitting. These criteria can be downloaded at www.dalycity.org

c) A completed Standard Electrical Plan and shall include a plot plan showing the front, side and rear setbacks with a minimum 1/8 inch = one foot scale or larger. The standard plan may be used for proposed solar installations of 10 kW or smaller in size and can be downloaded at www.dalycity.org

If standard electrical plans are not provided for use, an electrical plan shall be submitted that includes the following.

• Locations of main service or utility disconnect
• Total number of modules, number of modules per string and the total number of strings
• Make and model of inverter(s) and/or combiner box if used
• One-line diagram of system to include a readily accessible rapid disconnecting means for inverter.
• Specify grounding/bonding, conductor type and size, conduit type and size and number of conductors in each section of conduit.
• If batteries are to be installed, include them in the diagram and show their locations and venting.
• Equipment cut sheets including inverters, modules, AC and DC disconnects, combiners and wind generators
• Labeling of equipment as required by CEC, Sections 690 and 705
• Site diagram showing the arrangement of panels on the roof, north arrow, lot dimensions and the distance from property lines to adjacent buildings/structures (existing and proposed).

 d) A roof plan showing roof layout, PV panels, clearances to plumbing and mechanical vents and the following fire safety items: approximate location of roof access point, location of code-compliant access pathways, PV system fire classification, and the locations of all required labels and markings. Examples of clear path access pathways are available in the State Fire Marshall Solar PV Installation Guide.

 e) Completed expedited Structural Criteria along with required documentation. Provide structural drawings and calculations stamped and signed by a California-licensed Civil or Structural Engineer, along with the following information.

 • The type of roof covering and the number of roof coverings installed.
 • Type of roof framing, size of members and spacing.
 • Weight of panels, support locations and method of attachment
 • Framing plan and details for any work necessary to strengthen the existing roof structure.
 • Site-specific structural calculations.
 • Where an approved racking system is used, provide documentation showing manufacturer of the rack system, maximum allowable weight the system can support, attachment method to the roof and product evaluation information or structural design for the rack system.

3. Plan Review

Permit applications shall be submitted to the City of Daly City Building Division in person. Permit applications utilizing the standard plan should be reviewed in one to three business days.

4. Fees

See City of Daly City Master Fee Schedule

5. Inspections

Once all permits to construct the solar installation have been issued and the system has been installed, it must be inspected before final approval is granted for the solar system. On-site inspections can be scheduled by contacting the City of Daly City Building Division by telephone at 650-991-8061. When scheduling an inspection, provide the Photo Volatic permit number and address of the property. Inspection requests received during regular business hours are typically scheduled for the next business day. If the next business day is not available, the inspection should be scheduled within a five-day window.
Permit holders must be prepared to show conformance with all technical requirements in the field at the time of inspection. The inspector will verify that the installation is in conformance with applicable code requirements and with the approved plans. The inspection checklist provides an overview of common points of inspection that the applicant should be prepared to show compliance at the time of inspection. If not available, common checks include the following:

- The quantity of PV modules and the model numbers match the approved plans and specifications.
- Array conductors and components are installed in a neat and workman-like manner.
- PV array is properly grounded.
- Electrical boxes are accessible and connections are suitable for the environment.
- Array is fastened and sealed according to attachment detail.
- Conductors ratings and sizes match plans.
- Main Panel bus rating
- Appropriate signs are properly constructed, installed and displayed, including the following.
 - Sign identifying PV power source system attributes at DC disconnect
 - Sign identifying AC point of connection
 - Sign identifying switch for alternative power system
- Equipment ratings are consistent with application and installed signs on the installation, including the following.
 - Inverter has a rating as high as max voltage on PV power source sign.
 - DC-side Overcurrent Circuit Protection Devices (OCPDs) are DC rated at least as high as max voltage on sign.
 - Switches and OCPDs are installed according to the manufacturer’s specifications (i.e., many 600VDC switches require passing through the switch poles twice in a specific way).
 - Inverter is rated for the site AC voltage supplied and shown on the AC point of connection sign.
 - One-line diagram of system to include a readily accessible Rapid Shutdown of PV System.
 - A readily accessible rapid disconnect on the AC and DC side of the inverter.
 - A readily accessible rapid disconnect DC side of a micro inverter type module.
 - OCPD connected to the AC output of the inverter is rated at least 125% of maximum current on sign and is no larger than the maximum OCPD on the inverter listing label.
 - Sum of the main OCPD and the inverter OCPD is rated for not more than 120% of the bus bar rating.
 - All exterior conduit to be painted to match the nearest adjacent surface.
 - Smoke Detectors and Carbon Monoxide Alarms are required.

6. Departmental Contact Information

City of Daly City Building Inspection Division by telephone at 650-991-5787
City of Daly City
Department of Economic and Community Development
Building Division
333 – 90th Street, Daly City. CA. 94015

Solar PV Standard Plan – Simplified Central/String Inverter Systems for One- and Two-Family Dwellings

SCOPE: Use this plan ONLY for utility-interactive central/string inverter systems not exceeding a system AC inverter output rating of 10kW on the roof of a one- or two-family dwelling or accessory structure. The photovoltaic system must interconnect to the load side of a single-phase AC service panel of nominal 120/240Vac with a bus bar rating of 225A or less. This plan is not intended for bipolar systems, hybrid systems or systems that utilize storage batteries, charge controllers, trackers, more than two inverters or more than one DC combiner (noninverter-integrated) per inverter. Systems must be in compliance with current California Building Standards Codes and local amendments of the authority having jurisdiction (AHJ). Other Articles of the California Electrical Code (CEC) shall apply as specified in 690.3.

MANUFACTURER’S SPECIFICATION SHEETS MUST BE PROVIDED for proposed inverter, modules, combiner/junction boxes and racking systems. Installation instructions for bonding and grounding equipment shall be provided, and local AHJs may require additional details. Listed and labeled equipment shall be installed and used in accordance with any instructions included in the listing or labeling (CEC 110.3). Equipment intended for use with PV system shall be identified and listed for the application (CEC 690.4[D]).

Job Address: __ Permit #: ________________________
Contractor/ Engineer Name: __ License # and Class: __________________________
Signature: __ Date: ____________ Phone Number: ____________
Total # of Inverters installed: ___________ (If more than one inverter, complete and attach the “Supplemental Calculation Sheets” and the “Load Center Calculations” if a new load center is to be used.)

Inverter 1 AC Output Power Rating: _______________________ Watts
Inverter 2 AC Output Power Rating (if applicable): ____________ Watts
Combined Inverter Output Power Rating: ___________________ ≤ 10,000 Watts

Location Ambient Temperatures (Check box next to which lowest expected temperature is used):

1) □ Lowest expected ambient temperature for the location (T_L) = Between -1 to -5 °C
 □ Lowest expected ambient temperature for the location (T_L) = Between -6 to -10 °C

 Average ambient high temperature (T_H) = 47 °C

 Note: For a lower T_L or a higher T_H, use the Comprehensive Standard Plan

DC Information:

Module Manufacturer: _____________________________ Model: ____________________________

2) Module V_{oc} (from module nameplate): _____Volts 3) Module I_{sc} (from module nameplate): _______Amps
4) Module DC output power under standard test conditions (STC) = _______ Watts (STC)

5) DC Module Layout

<table>
<thead>
<tr>
<th>Identify each source circuit (string) for inverter 1 shown on the roof plan with a Tag (e.g., A, B, C...)</th>
<th>Number of modules per source circuit for inverter 1</th>
<th>Identify, by tag, which source circuits on the roof are to be paralleled (if none, put N/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Combiner 1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Combiner 2:</td>
</tr>
</tbody>
</table>

Total number of source circuits for inverter 1:

6) Are DC/DC Converters used? □ Yes □ No If No, skip to STEP 7. If Yes, enter info below.

<table>
<thead>
<tr>
<th>DC/DC Converter Model #:</th>
<th>DC/DC Converter Max DC Input Voltage: ____Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max DC Output Current: _______ Amps</td>
</tr>
<tr>
<td></td>
<td>Max DC Output Voltage: _______ Volts</td>
</tr>
<tr>
<td></td>
<td>Max # of DC/DC Converters in an Input Circuit:</td>
</tr>
<tr>
<td></td>
<td>DC/DC Converter Max DC Input Power: _______ Watts</td>
</tr>
</tbody>
</table>

7) Max. System DC Voltage – Use A1 or A2 for systems without DC/DC converters, and B1 or B2 with DC/DC converters.

□ A1. Module V_{OC} (STEP 2) = _______ x # in series (STEP 5) _______ x 1.12 (If -1≤T_L≤-5°C, STEP 1) = _______ V

□ A2. Module V_{OC} (STEP 2) = _______ x # in series (STEP 5) _______ x 1.14 (If -6≤T_L≤-10°C, STEP 1) = _______ V

Table 1. Maximum Number of PV Modules in Series Based on Module Rated V_{OC} for 600 Vdc Rated Equipment (CEC 690.7)

<table>
<thead>
<tr>
<th>Max. Rated Module V_{OC} (*1.12) (Volts)</th>
<th>29.76</th>
<th>31.51</th>
<th>33.48</th>
<th>35.71</th>
<th>38.27</th>
<th>41.21</th>
<th>44.64</th>
<th>48.70</th>
<th>53.57</th>
<th>59.52</th>
<th>66.96</th>
<th>76.53</th>
<th>89.29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Rated Module V_{OC} (*1.14) (Volts)</td>
<td>29.24</td>
<td>30.96</td>
<td>32.89</td>
<td>35.09</td>
<td>37.59</td>
<td>40.49</td>
<td>43.86</td>
<td>47.85</td>
<td>52.63</td>
<td>58.48</td>
<td>65.79</td>
<td>75.19</td>
<td>87.72</td>
</tr>
<tr>
<td>Max # of Modules for 600 Vdc</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Use for DC/DC converters. The value calculated below must be less than DC/DC converter max DC input voltage (STEP #6).

□ B1. Module V_{OC} (STEP 2) _______ x # of modules per converter (STEP 6) _______ x 1.12 (If -1≤T_L≤-5°C, STEP 1) = _______ V

□ B2. Module V_{OC} (STEP 2) _______ x # of modules per converter (STEP 6) _______ x 1.14 (If -6≤T_L≤-10°C, STEP 1) = _______ V

Table 2. Largest Module V_{OC} for Single-Module DC/DC Converter Configurations (With 80V AFCI Cap) (CEC 690.7 and 690.11)

<table>
<thead>
<tr>
<th>Max. Rated Module V_{OC} (*1.12) (Volts)</th>
<th>30.4</th>
<th>33.0</th>
<th>35.7</th>
<th>38.4</th>
<th>41.1</th>
<th>43.8</th>
<th>46.4</th>
<th>49.1</th>
<th>51.8</th>
<th>54.5</th>
<th>57.1</th>
<th>59.8</th>
<th>62.5</th>
<th>65.2</th>
<th>67.9</th>
<th>70.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Rated Module V_{OC} (*1.14) (Volts)</td>
<td>29.8</td>
<td>32.5</td>
<td>35.1</td>
<td>37.7</td>
<td>40.4</td>
<td>43.0</td>
<td>45.6</td>
<td>48.2</td>
<td>50.9</td>
<td>53.5</td>
<td>56.1</td>
<td>58.8</td>
<td>61.4</td>
<td>64.0</td>
<td>66.7</td>
<td>69.3</td>
</tr>
<tr>
<td>DC/DC Converter Max DC Input (STEP #6) (Volts)</td>
<td>34</td>
<td>37</td>
<td>40</td>
<td>43</td>
<td>46</td>
<td>49</td>
<td>52</td>
<td>55</td>
<td>58</td>
<td>61</td>
<td>64</td>
<td>67</td>
<td>70</td>
<td>73</td>
<td>76</td>
<td>79</td>
</tr>
</tbody>
</table>

8) Maximum System DC Voltage from DC/DC Converters to Inverter – Only required if Yes in STEP 6

Maximum System DC Voltage = _______ Volts

9) Maximum Source Circuit Current

Is Module I_{sc} below 9.6 Amps (STEP 3)? □ Yes □ No (if No, use Comprehensive Standard Plan)
10) Sizing Source Circuit Conductors
Source Circuit Conductor Size = Min. #10 AWG copper conductor, 90°C wet (USE-2, PV Wire, XHHW-2, THWN-2, RHW-2)
For up to 8 conductors in roof-mounted conduit exposed to sunlight at least ½” from the roof covering (CEC 310)
Note: For over 8 conductors in the conduit or mounting height of lower than ½” from the roof, use Comprehensive Plan.

11) Are PV source circuits combined prior to the inverter?
☐ Yes ☐ No
If No, use Single Line Diagram 1 with Single Line Diagram 3 and proceed to STEP 13.
If Yes, use Single Line Diagram 2 with Single Line Diagram 4 and proceed to STEP 12.
Is source circuit OCPD required?
☐ Yes ☐ No
Source circuit OCPD size (if needed): 15 Amps

12) Sizing PV Output Circuit Conductors – If a combiner box will NOT be used from [STEP 11],
Output Circuit Conductor Size = Min. #6 AWG copper conductor

13) Inverter DC Disconnect
Does the inverter have an integrated DC disconnect?
☐ Yes ☐ No
If yes, proceed to STEP 14.
If no, the external DC disconnect to be installed is rated for ______ Amps (DC) and ______ Volts (DC)

14) Inverter information
Manufacturer: ________________________________ Model: ________________________________
Max. Continuous AC Output Current Rating: ______ Amps
Integrated DC Arc-Fault Circuit Protection?
☐ Yes ☐ No (If No is selected, Comprehensive Standard Plan)
Grounded or Ungrounded System: ☐ Grounded ☐ Ungrounded

AC Information:

15) Sizing Inverter Output Circuit Conductors and OCPD
Inverter Output OCPD rating = ______ Amps (Table 3)
Inverter Output Circuit Conductor Size = ______ AWG (Table 3)

<table>
<thead>
<tr>
<th>Inverter Continuous Output Current Rating (Amps) (STEP#14)</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>28</th>
<th>32</th>
<th>36</th>
<th>40</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum OCPD Size (Amps)</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Minimum Conductor Size (AWG, 75°C, Copper)</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
16) Point of Connection to Utility

Only load side connections are permitted with this plan. Otherwise, use Comprehensive Standard Plan.

Is the PV OCPD positioned at the opposite end from input feeder location or main OCPD location? □ Yes □ No

If Yes, circle the Max Combined PV System OCPD(s) at 120% value as determined from STEP 15 (or STEP S20), bus bar Rating, and Main OCPD as shown in Table 4.

If No, circle the Max Combined PV System OCPD(s) at 100% value as determined from STEP 15 (or STEP S20), bus bar Rating, and Main OCPD as shown in Table 4.

Per 705.12(D)(2): \[\text{Inverter output OCPD size (STEP #15 or S20) + Main OCPD Size}\] \(\leq\) \[\text{bus size \times (100\% or 120\%)}\]

| Table 4. Maximum Combined Supply OCPDs Based on Bus Bar Rating (Amps) per CEC 705.12(D)(2) |
|---------------------------------|---|---|---|---|---|---|---|---|
| Bus bar Rating | 100 | 125 | 125 | 200 | 200 | 225 | 225 | 225 |
| Main OCPD | 100 | 100 | 125 | 150 | 175 | 200 | 175 | 200 |
| Max Combined PV System OCPD(s) at 120\% of bus bar Rating | 20 | 50 | 25 | 60* | 60* | 40 | 60* | 60* |
| Max Combined PV System OCPD(s) at 100\% of bus bar Rating | 0 | 25 | 0 | 50 | 25 | 0 | 50 | 25 |

*This value has been lowered to 60 A from the calculated value to reflect 10kW AC size maximum.

Reduction of the main breaker is not permitted with this plan. Otherwise, use Comprehensive Standard Plan.

17 & 18 & 19) Labels and Grounding and Bonding

This content is covered by the labels on Page 4 and the Single Line Diagram(s). For background information, refer to the Comprehensive Standard Plan.
CEC Articles 690 and 705 and CRC Section R331 require the following labels or markings be installed at these components of the photovoltaic system:

WARNING
INVERTER OUTPUT CONNECTION; DO NOT RELOCATE THIS OVERCURRENT DEVICE

CEC 705.12(D)(7)
[Not required if panelboard is rated not less than sum of ampere ratings of all overcurrent devices supplying it]

WARNING
ELECTRIC SHOCK HAZARD. THE DC CONDUCTORS OF THIS PHOTOVOLTAIC SYSTEM ARE UNGROUNDED AND MAY BE ENERGIZED

CEC 690.35(F)
[Only required for ungrounded systems]

WARNING: PHOTOVOLTAIC POWER SOURCE
CRC R331.2 and CFC 605.11.1
[Marked on junction/combiner boxes and conduit every 10']

WARNING DUAL POWER SOURCES
SECOND SOURCE IS PHOTOVOLTAIC SYSTEM
RATED AC OUTPUT CURRENT- ____AMPS AC NORMAL OPERATING VOLTAGE ___VOLTS

CEC 690.54 & CEC 705.12(D)(4)

PV SYSTEM AC DISCONNECT
RATED AC OUTPUT CURRENT - ____AMPS AC NORMAL OPERATING VOLTAGE ___VOLTS

CEC 690.54

WARNING
ELECTRIC SHOCK HAZARD
IF A GROUND FAULT IS INDICATED, NORMALLY GROUNDED CONDUCTORS MAY BE UNGROUNDED AND ENERGIZED

CEC 690.5(C)
[Normally already present on listed inverters]

WARNING
ELECTRIC SHOCK HAZARD
DO NOT TOUCH TERMINALS TERMINALS ON BOTH LINE AND LOAD SIDES MAY BE ENERGIZED IN THE OPEN POSITION

CEC 690.17

PV SYSTEM DC DISCONNECT
RATED MAX POWER-POINT CURRENT- ____ADC
RATED MAX POWER-POINT VOLTAGE- ____VDC
SHORT CIRCUIT CURRENT- ____ADC
MAXIMUM SYSTEM VOLTAGE- ___VDC

CEC 690.53

Code Abbreviations:
California Electrical Code (CEC)
California Residential Code (CRC)
California Fire Code (CFC)

Informational note: ANSI Z535.4 provides guidelines for the design of safety signs and labels for application to products. A phenolic plaque with contrasting colors between the text and background would meet the intent of the code for permanency. No type size is specified, but 20 point (3/8") should be considered the minimum.

CEC 705.12 requires a permanent plaque or directory denoting all electric power sources on or in the premises.
Solar PV Standard Plan – Simplified
Central/String Inverter System for One- and Two-Family Dwellings

DESCRIPTION

SOLAR PV MODULE / STRING

DC/DC CONVERTERS INSTALLED? YES / NO (IF YES, STEPS 6 & 8 REQUIRED)

SOURCE CIRCUIT JUNCTION BOX INSTALLED? YES / NO

SEPARATE DC DISCONNECT INSTALLED? YES / NO

INTERNAL INVERTER DC DISCONNECT: YES / NO

CENTRAL INVERTER LOAD CENTER INSTALLED? YES / NO

PV PRODUCTION METER INSTALLED? YES / NO

* SEPARATE AC DISCONNECT INSTALLED? YES / NO (USE LINE DIAGRAM 2)

CONDUCTOR/CONDUIT SCHEDULE

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION AND CONDUCTOR TYPE</th>
<th>CONDUCTOR SIZE</th>
<th>NUMBER OF CONDUCTORS</th>
<th>CONDUIT/CABLE TYPE</th>
<th>CONDUIT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>USE-2 □ OR PV-WIRE □</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED:

- GROUNDED (INCLUDE GEC)
- UNGROUNDED

CONDUCTOR/CONDUIT SCHEDULE

SINGLE-LINE DIAGRAM #1 – NO STRINGS COMBINED PRIOR TO INVERTER

- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

* Consult with your local AHJ and/or Utility
Solar PV Standard Plan – Simplified
Central/String Inverter System for One- and Two-Family Dwellings

DESCRIPTION

SOLAR PV MODULE / STRING DC/DC CONVERTERS INSTALLED?

- YES / NO

 (IF YES, STEPS 6 & 8 REQUIRED)

SOURCE CIRCUIT JUNCTION BOX INSTALLED?

- YES / NO

COMBINER BOX (STEPS 11 & 12 REQUIRED)

SEPARATE AC DISCONNECT INSTALLED?

- YES / NO

INTERNAL INVERTER DC DISCONNECT

- YES / NO

CENTRAL INVERTER LOAD CENTER INSTALLED?

- YES / NO

PV PRODUCTION METER INSTALLED?

- YES / NO

CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED:

- GROUNDED (INCLUDE GEC)
- UNGROUNDED

FOR UNGROUNDED SYSTEMS:

- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

SINGLE-LINE DIAGRAM #2 – COMBINING STRINGS PRIOR TO INVERTER

COMBINER CONDUCTOR/CONDUIT SCHEDULE

- TAG
- DESCRIPTION
- CONDUCTOR TYPE
- CONDUCTOR SIZE
- NUMBER OF CONDUCTORS
- CONDUIT/CABLE TYPE
- CONDUIT SIZE

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION AND CONDUCTOR TYPE</th>
<th>CONDUCTOR SIZE</th>
<th>NUMBER OF CONDUCTORS</th>
<th>CONDUIT/CABLE TYPE</th>
<th>CONDUIT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>USE-2 OR PV-WIRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>EGC/GEC.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>EGC/GEC.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>EGC/GEC.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>EGC/GEC.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NON-COMBINED STRINGS CONDUCTOR/CONDUIT SCHEDULE (IF APPLICABLE)

- TAG
- DESCRIPTION AND CONDUCTOR TYPE
- CONDUCTOR SIZE
- NUMBER OF CONDUCTORS
- CONDUIT/CABLE TYPE
- CONDUIT SIZE

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION AND CONDUCTOR TYPE</th>
<th>CONDUCTOR SIZE</th>
<th>NUMBER OF CONDUCTORS</th>
<th>CONDUIT/CABLE TYPE</th>
<th>CONDUIT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>USE-2 OR PV-WIRE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>EGC/GEC.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENTER "N/A" WHERE SUITABLE FOR WHEN NOT USING CONDUIT OR CABLE AS PERMITTED BY CODE

* Consult with your local AHJ and/or Utility

IF DC/DC CONVERTERS ARE USED, THEY ARE RUN IN SERIES (FIXED SOURCE CIRCUIT VOLTAGE DC/DC CONVERTERS)
Solar PV Standard Plan — Simplified
Central/String Inverter Systems for One- and Two-Family Dwellings

Supplemental Calculation Sheets for Inverter #2
(Only include if second inverter is used)

<table>
<thead>
<tr>
<th>DC Information:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Manufacturer: __________________________</td>
</tr>
<tr>
<td>S2) Module V_{oc} (from module nameplate): _____ Volts</td>
</tr>
<tr>
<td>S4) Module DC output power under standard test conditions (STC) = _____ Watts (STC)</td>
</tr>
</tbody>
</table>

S5) DC Module Layout

<table>
<thead>
<tr>
<th>Identify each source circuit (string) for inverter 1 shown on the roof plan with a Tag (e.g., A, B, C...)</th>
<th>Number of modules per source circuit for inverter 1</th>
<th>Identify, by tag, which source circuits on the roof are to be paralleled (if none, put N/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Combiner 1:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Combiner 2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total number of source circuits for inverter 1:</td>
</tr>
</tbody>
</table>

S6) Are DC/DC Converters used?
☐ Yes ☐ No
If No, skip to STEP#S7. If Yes, enter info below.

<table>
<thead>
<tr>
<th>DC/DC Converter Model #: __________________________</th>
<th>DC/DC Converter Max DC Input Voltage: _____ Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max DC Output Current: __________________________ Amps</td>
<td>Max DC Output Voltage: _____ Volts</td>
</tr>
<tr>
<td>Max # of DC/DC Converters in a source circuit: ____</td>
<td>DC/DC Converter Max DC Input Power: _____ Watts</td>
</tr>
</tbody>
</table>
S7) Max. System DC Voltage – Use A1 or A2 for systems without DC/DC converters, and B1 or B2 with DC/DC converters.

| A1. Module VOC (STEP S2) = ________ x # in series (STEP S5)[]___ x 1.12 (If -1≤T_L≤-5°C, STEP S1) = _____ V |
| A2. Module VOC (STEP S2) = ________ x # in series (STEP S5)[]___ x 1.14 (If -6≤T_L≤-10°C, STEP S1) = _____ V |

| Table 1. Maximum Number of PV Modules in Series Based on Module Rated VOC for 600 Vdc Rated Equipment (CEC 690.7) |
|---------------------------------|------|------|------|------|------|------|------|------|------|------|
| Max. Rated Module VOC (*1.12) (Volts) | 29.76 | 31.51 | 33.48 | 35.71 | 38.27 | 41.21 | 44.64 | 48.70 | 53.57 | 59.52 |
| Max. Rated Module VOC (*1.14) (Volts) | 29.24 | 30.96 | 32.89 | 35.09 | 37.59 | 40.49 | 43.86 | 47.85 | 52.63 | 58.48 |
| Max # of Modules for 600 Vdc | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 |

Use for DC/DC converters. The value calculated below must be less than DC/DC converter max DC input voltage (STEP #S6).

| B1. Module VOC (STEP#S2) ______ x # of modules per converter (STEP S6) ______ x 1.12 (If -1≤T_L≤-5°C, STEP S1) = _____ V |
| B2. Module VOC (STEP#S2) ______ x # of modules per converter (STEP S6) ______ x 1.14 (If -6≤T_L≤-10°C, STEP S1) = _____ V |

| Table 2. Largest Module VOC for Single-Module DC/DC Converter Configurations (With 80V AFCI Cap) (CEC 690.7 and 690.11) |
|---------------------------------|------|------|------|------|------|------|------|------|------|------|
| Max. Rated Module VOC (*1.12) (Volts) | 30.4 | 33.0 | 35.7 | 38.4 | 41.1 | 43.8 | 46.4 | 49.1 | 51.8 | 54.5 |
| Max. Rated Module VOC (*1.14) (Volts) | 29.8 | 32.5 | 35.1 | 37.7 | 40.4 | 43.0 | 45.6 | 48.2 | 50.9 | 53.5 |
| DC/DC Converter Max DC Input (STEP #6) (Volts) | 34 | 37 | 40 | 43 | 46 | 49 | 52 | 55 | 58 | 61 |

S8) Maximum System DC Voltage from DC/DC Converters to Inverter – Only required if Yes in STEP S6

Maximum System DC Voltage = _____________ Volts

S9) Maximum Source Circuit Current

Is Module I_SC below 9.6 Amps (STEP S3)? □Yes □No (if No, use Comprehensive Standard Plan)

S10) Sizing Source Circuit Conductors:

Source Circuit Conductor Size = Min. #10 AWG copper conductor, 90°C wet (USE-2, PV Wire, XHHW-2, THWN-2, RHW-2)

For up to 8 conductors in roof-mounted conduit exposed to sunlight at least ½” from the roof covering (CEC 310)

Note: For over 8 conductors in the conduit or mounting height of lower than ½“from the roof, use Comprehensive Plan.

S11) Are PV source circuits combined prior to the inverter? □Yes □No

If No, use Single Line Diagram 1 with Single Line Diagram 3 and proceed to STEP S13.

If Yes, use Single Line Diagram 2 with Single Line Diagram 4 and proceed to STEP S12.

Is source circuit OCPD required? □Yes □No

Source circuit OCPD size (if needed): 15 Amps

S12) Sizing PV Output Circuit Conductors – If a Combiner box will NOT be used from [STEP#S11],

Output Circuit Conductor Size = Min. #6 AWG copper conductor

S13) Inverter DC Disconnect

Does the inverter have an integrated DC disconnect? □Yes □No

If yes, proceed to STEP S14.

If No, the external DC disconnect to be installed is rated for _____ Amps (DC) and _____ Volts (DC)
S14) Inverter information:
Manufacturer: ___________________ Model: ___________________
Max. Continuous AC Output Current Rating: ______ Amps
Integrated DC Arc-Fault Circuit Protection? ☐ Yes ☐ No (If No is selected, Comprehensive Standard Plan)
Grounded or Ungrounded System: ☐ GROUNDED ☐ UNGROUNDED

AC Information:

S15) Sizing Inverter Output Circuit Conductors and OCPD:
Inverter Output OCPD rating = ______ Amps (Table 3)
Inverter Output Circuit Conductor Size = ______ AWG (Table 3)

<table>
<thead>
<tr>
<th>Inverter Continuous Output Current Rating (Amps) (STEP 14)</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>28</th>
<th>32</th>
<th>36</th>
<th>40</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum OCPD Size (Amps)</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Minimum Conductor Size (AWG, 75°C, Copper)</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Load Center Calculations
(Omit if a load center will not be installed for PV OCPDs)

S20) Load Center Output:
Calculate the sum of the maximum AC outputs from each inverter.
Inverter #1 Max Continuous AC Output Current Rating[STEP S14] ______ × 1.25 = _______ Amps
Inverter #2 Max Continuous AC Output Current Rating[STEP S14] ______ × 1.25 = _______ Amps
Total inverter currents connected to load center (sum of above) = _______ Amps

Conductor Size: _______ AWG
Overcurrent Protection Device: _______ Amps
Load center bus bar rating: _______ Amps

The sum of the ampere ratings of overcurrent devices in circuits supplying power to a bus bar or conductor shall not exceed 120 percent of the rating of the bus bar or conductor.
Solar PV Standard Plan – Simplified
Central/String Inverter System for One- and Two-Family Dwellings

DESCRIPTION
SOLAR PV MODULE / STRING
DC/DC CONVERTERS INSTALLED? YES / NO (IF YES, STEPS 6 & 8 REQUIRED)
SOURCE CIRCUIT JUNCTION BOX INSTALLED? YES / NO
SEPARATE DC DISCONNECT INSTALLED? YES / NO
SEPARATE AC DISCONNECT INSTALLED? YES / NO
CENTRAL INVERTER
CENTRAL INVERTER DC DISCONNECT: YES / NO
TO LOAD CENTER ON LINE DIAGRAM

TAG DESCRIPTION
1 SOLAR PV MODULE / STRING
2 DC/DC CONVERTERS INSTALLED? YES / NO (IF YES, STEPS 6 & 8 REQUIRED)
3 SOURCE CIRCUIT JUNCTION BOX INSTALLED? YES / NO
4 SEPARATE DC DISCONNECT INSTALLED? YES / NO
5 INTERNAL INVERTER DC DISCONNECT: YES / NO
6 SEPARATE AC DISCONNECT INSTALLED? YES / NO
7 TO LOAD CENTER ON LINE DIAGRAM

IF DC/DC CONVERTERS ARE USED, CHECK THE BOX BELOW THE CORRESPONDING CONFIGURATION

FOR UNGROUNDED SYSTEMS:
- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

A TAG DESCRIPTION AND CONDUCTOR TYPE CONDUCTOR SIZE NUMBER OF CONDUCTORS CONDUIT/CABLE TYPE CONDUIT SIZE
A USE-2 □ OR PV-WIRE □
EGC/GEC:
B EGC/GEC:
C EGC/GEC:

ENTER "N/A" WHERE SUITABLE FOR WHEN NOT USING CONDUIT OR CABLE AS PERMITTED BY CODE

PARALLEL DC/DC CONVERTERS ON ONE SOURCE CIRCUIT (FIXED UNIT VOLTAGE DC/DC CONVERTERS)
DC/DC CONVERTERS ARE ALL RUN IN SERIES (FIXED SOURCE CIRCUIT VOLTAGE DC/DC CONVERTERS)

* Consult with your local AHJ and/or Utility
Solar PV Standard Plan – Simplified
Central/String Inverter System for One- and Two-Family Dwellings

DESCRIPTION

SOLAR PV MODULE / STRING
DC/DC CONVERTERS INSTALLED? YES / NO (IF YES, STEPS 6 & 8 REQUIRED)
SOURCE CIRCUIT JUNCTION BOX INSTALLED? YES / NO
SEPARATE DC DISCONNECT INSTALLED? YES / NO
INTERNAL INVERTER DC DISCONNECT: YES / NO
CENTRAL INVERTER
SEPARATE AC DISCONNECT INSTALLED? YES / NO
TO LOAD CENTER ON LINE DIAGRAM 3

* Consult with your local AHJ and/or Utility

SINGLE-LINE DIAGRAM #4 – ADDITIONAL INVERTER FOR DIAGRAM #2

INVERTER # 2
CHECK A BOX FOR WHETHER SYSTEM IS GROUNDED OR UNGROUNDED: GROUNDED (INCLUDE GEC) UNGROUNDED
FOR UNGROUNDED SYSTEMS:
- DC OCPD MUST DISCONNECT BOTH CONDUCTORS OF EACH SOURCE CIRCUIT
- UNGROUNDED CONDUCTORS MUST BE IDENTIFIED PER 210.5(C). WHITE-FINISHED CONDUCTORS ARE NOT PERMITTED.

COMBINER CONDUCTOR/CONDUIT SCHEDULE

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION AND CONDUCTOR TYPE</th>
<th>CONDUCTOR SIZE</th>
<th>NUMBER OF CONDUCTORS</th>
<th>CONDUIT/CABLE TYPE</th>
<th>CONDUIT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>USE-2 □ OR PV-WIRE □</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NON-COMBINED STRINGS CONDUCTOR/CONDUIT SCHEDULE (IF APPLICABLE)

<table>
<thead>
<tr>
<th>TAG</th>
<th>DESCRIPTION AND CONDUCTOR TYPE</th>
<th>CONDUCTOR SIZE</th>
<th>NUMBER OF CONDUCTORS</th>
<th>CONDUIT/CABLE TYPE</th>
<th>CONDUIT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>USE-2 □ OR PV-WIRE □</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>EGC/GEC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENTER "N/A" WHERE SUITABLE FOR WHEN NOT USING CONDUIT OR CABLE AS PERMITTED BY CODE.

IF DC/DC CONVERTERS ARE USED, THEY ARE RUN IN SERIES (FIXED SOURCE CIRCUIT VOLTAGE DC/DC CONVERTERS).
Items required: roof layout of all panels, modules, clear access pathways and approximate locations of electrical disconnecting means and roof access points.
SOLAR PV RAPID SHUTDOWN

Items required: roof layout of all panels, modules, clear access pathways and approximate locations of electrical disconnecting means and roof access points.
STRUCTURAL CRITERIA FOR RESIDENTIAL ROOFTOP FLUSH-MOUNTED SOLAR ARRAYS

1. ROOF CHECKS

A. Visual Review/Contractor’s Site Audit of Existing Conditions:
1) Is the roof a single roof without a reroof overlay? ☐ Y ☐ N
2) Does the roof structure comply with structural building code requirements, without signs of alterations or significant structural deterioration or sagging, as illustrated in Figure 1? ☐ Y ☐ N
3) Is the dwelling more than 200 yards of the San Francisco Bay? ☐ Y ☐ N
4) Is the dwelling more than 200 yards of the Pacific Ocean? ☐ Y ☐ N

B. Roof Structure Data:
1) Measured roof slope (e.g. 6:12):
2) Measured rafter spacing (center-to-center):
3) Type of roof framing (rafter or manufactured truss): ☐ Rafter ☐ Truss
4) Measured rafter size (e.g. 13/4 x 33/4, not 2x4):
5) Measured rafter horizontal span (see Figure 4):
6) Horizontal rafter span per Table 2:
7) Is measured horizontal rafter span less than Table 2 span? ☐ Y ☐ N ☐ Truss

2. SOLAR ARRAY CHECKS

A. Flush-mounted Solar Array:
1) Is the plane of the modules (panels) parallel to the plane of the roof? ☐ Y ☐ N
2) Is there a 2" to 10" gap between underside of module and the roof surface? ☐ Y ☐ N
3) Modules do not overhang any roof edges (ridges, hips, gable ends, eaves)? ☐ Y ☐ N

B. Do the modules plus support components weigh no more than:
4 psf for photovoltaic arrays or 5 psf for solar thermal arrays? ☐ Y ☐ N

C. Does the array cover no more than half of the total roof area (all roof planes)? ☐ Y ☐ N

D. Are solar support component manufacturer’s project-specific completed worksheets, tables with relevant cells circled, or web-based calculator results attached? ☐ Y ☐ N

E. Is a roof plan of the module and anchor layout attached? (see Figure 2) ☐ Y ☐ N

F. Downward Load Check (Anchor Layout Check):
1) Proposed anchor horizontal spacing (see Figure 2):
2) Horizontal anchor spacing per Table 1:
3) Is proposed anchor horizontal spacing less than Table 1 spacing? ☐ Y ☐ N

G. Wind Uplift Check (Anchor Fastener Check):
1) Anchor fastener data (see Figure 3):
a. Diameter of lag screw, hanger bolt or self-drilling screw:
b. Embedment depth of rafter:
c. Number of screws per anchor (typically one):
d. Are 5/16” diameter lag screws with 2.5” embedment into the rafter used, OR does the anchor fastener meet the manufacturer’s guidelines? ☐ Y ☐ N
3. SUMMARY

A. All items above are checked YES. No additional calculations are required.

B. One or more items are checked NO. Attach project-specific drawings and calculations stamped and signed by a California-licensed Civil or Structural Engineer.

Job Address: ________________________________ Permit #: ________________________
Contractor/Installer: ________________________ License # & Class: ___________________
Signature: ____________________________ Date: ____________ Phone #: ______________________

Additional Rafter Span Check Criteria

Table 1. Maximum Horizontal Anchor Spacing

<table>
<thead>
<tr>
<th>Roof Slope</th>
<th>Photovoltaic Arrays (4 psf max)</th>
<th>Solar Thermal Arrays (5 psf max)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16” o.c.</td>
<td>24” o.c.</td>
</tr>
<tr>
<td>Flat to 6:12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:12 to 12:12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:12 to 24:12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solar support component manufacturer’s guidelines may be relied upon to ensure the array above the roof is properly designed, but manufacturer’s guidelines typically do NOT check to ensure that the roof itself can support the concentrated loads from the solar array. Table 1 assumes that the roof complied with the building code in effect at the time of construction, and places limits on anchor horizontal spacing to ensure that a roof structure is not overloaded under either downward loads or wind uplift loads. Note 4 below lists the basic assumptions upon which this table is based.

Table 1 Notes:

1. Anchors are also known as “stand-offs”, “feet”, “mounts” or “points of attachment”. Horizontal anchor spacing is also known as “cross-slope” or “east-west” anchor spacing (see Figure 2).
 Note: All lag screws and/or connectors shall be hot-dipped galvanized, stainless steel, or aluminum type material due to the weather condition of Daly City.
2. If anchors are staggered from row-to-row going up the roof, the anchor spacing may be twice that shown above, but no greater than 6’-0”.
3. For manufactured plated wood trusses at slopes of flat to 6:12, the horizontal anchor spacing shall not exceed 4’-0” and anchors in adjacent rows shall be staggered.
4. This table is based on the following assumptions:
 - The roof structure conformed to building code requirements at the time it was built.
 - The attached list of criteria is met.
 - Mean roof height is not greater than 40 feet.
 - Roof sheathing is at least 7/16” thick oriented strand board or plywood. 1x skip sheathing is acceptable.
 - If the dwelling is in Wind Exposure B (typical urban, suburban or wooded areas farther than 500 yards from large open fields), no more than one of the following conditions apply:
 - The dwelling is located in a special wind region with design wind speed between 115 and 130...
- mph per ASCE 7-10, or
 - The dwelling is located on the top half of a tall hill, provided average slope steeper is less than 15%.
- If the dwelling is in Wind Exposure C (within 500 yards of large open fields or grasslands), all of the following conditions apply:
 - Design wind speed is 110 mph or less (not in a Special Wind Region), and
 - The dwelling is not located on the top half of a tall hill.
- The solar array displaces roof live loads (temporary construction loads) that the roof was originally designed to carry.
- The Structural Technical Appendix provides additional information about analysis assumptions.

<table>
<thead>
<tr>
<th>Assumed Vintage</th>
<th>Nominal Size</th>
<th>Actual Size</th>
<th>Non-Tile Roof</th>
<th>Tile Roof</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>16" o.c.</td>
<td>24" o.c.</td>
</tr>
<tr>
<td>Post-1960</td>
<td>2x4</td>
<td>1½"x3½""</td>
<td>9'-10""</td>
<td>8'-0""</td>
</tr>
<tr>
<td></td>
<td>2x6</td>
<td>1½"x5½""</td>
<td>14'-4""</td>
<td>11'-9""</td>
</tr>
<tr>
<td></td>
<td>2x8</td>
<td>1½"x7¼""</td>
<td>18'-2""</td>
<td>14'-10""</td>
</tr>
<tr>
<td>Pre-1960</td>
<td>2x4</td>
<td>1¾"x3¾""</td>
<td>11'-3""</td>
<td>9'-9""</td>
</tr>
<tr>
<td></td>
<td>2x6</td>
<td>1¾"x5¾""</td>
<td>17'-0""</td>
<td>14'-0""</td>
</tr>
<tr>
<td></td>
<td>2x8</td>
<td>1¾"x7¾""</td>
<td>22'-3""</td>
<td>18'-0""</td>
</tr>
</tbody>
</table>

Table 2 Notes:

1. See Figure 4 for definition of roof rafter maximum horizontal span.
2. “Non-tile Roof” = asphalt shingle, wood shingle & wood shake, with an assumed roof assembly weight of 10 psf.
3. “Tile Roof” = clay tile or cement tile, with an assumed roof assembly weight of 20psf.
4. Unaltered manufactured plated-wood trusses may be assumed to be code compliant and meet intent of Table 2.
5. This table is based on the following assumptions:
 - Span/deflection ratio is equal to or greater than 180.
 - For post-1960 construction, wood species and grade is Douglas Fir-Larch No. 2.
 - For pre-1960 construction, wood species and grade is Douglas Fir-Larch No. 1.
• Other wood species and/or grade are also acceptable if allowable bending stress is equal or greater to that listed above.

The site auditor should verify the following:

6. No visually apparent disallowed rafter holes, notches and truss modifications as shown above.
7. No visually apparent structural decay or un-repaired fire damage.
8. Roof sag, measured in inches, is not more than the rafter or ridge beam length in feet divided by 20.

Rafters that fail the above criteria should not be used to support solar arrays unless they are first strengthened.

Figure 1. Roof Visual Structural Review (Contractor’s Site Audit) of Existing Conditions.

Figure 2. Sample Solar Panel Array and Anchor Layout Diagram (Roof Plan).
Figure 3. Typical Anchor with Lag Screw Attachment.